]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/cone/cone.py
More minor cleanup of motzkin_decomposition().
[sage.d.git] / mjo / cone / cone.py
1 from sage.all import *
2
3 def is_lyapunov_like(L,K):
4 r"""
5 Determine whether or not ``L`` is Lyapunov-like on ``K``.
6
7 We say that ``L`` is Lyapunov-like on ``K`` if `\left\langle
8 L\left\lparenx\right\rparen,s\right\rangle = 0` for all pairs
9 `\left\langle x,s \right\rangle` in the complementarity set of
10 ``K``. It is known [Orlitzky]_ that this property need only be
11 checked for generators of ``K`` and its dual.
12
13 INPUT:
14
15 - ``L`` -- A linear transformation or matrix.
16
17 - ``K`` -- A polyhedral closed convex cone.
18
19 OUTPUT:
20
21 ``True`` if it can be proven that ``L`` is Lyapunov-like on ``K``,
22 and ``False`` otherwise.
23
24 .. WARNING::
25
26 If this function returns ``True``, then ``L`` is Lyapunov-like
27 on ``K``. However, if ``False`` is returned, that could mean one
28 of two things. The first is that ``L`` is definitely not
29 Lyapunov-like on ``K``. The second is more of an "I don't know"
30 answer, returned (for example) if we cannot prove that an inner
31 product is zero.
32
33 REFERENCES:
34
35 M. Orlitzky. The Lyapunov rank of an improper cone.
36 http://www.optimization-online.org/DB_HTML/2015/10/5135.html
37
38 EXAMPLES:
39
40 The identity is always Lyapunov-like in a nontrivial space::
41
42 sage: set_random_seed()
43 sage: K = random_cone(min_ambient_dim=1, max_ambient_dim=8)
44 sage: L = identity_matrix(K.lattice_dim())
45 sage: is_lyapunov_like(L,K)
46 True
47
48 As is the "zero" transformation::
49
50 sage: K = random_cone(min_ambient_dim=1, max_ambient_dim=8)
51 sage: R = K.lattice().vector_space().base_ring()
52 sage: L = zero_matrix(R, K.lattice_dim())
53 sage: is_lyapunov_like(L,K)
54 True
55
56 Everything in ``K.lyapunov_like_basis()`` should be Lyapunov-like
57 on ``K``::
58
59 sage: K = random_cone(min_ambient_dim=1, max_ambient_dim=6)
60 sage: all([ is_lyapunov_like(L,K) for L in K.lyapunov_like_basis() ])
61 True
62
63 """
64 return all([(L*x).inner_product(s) == 0
65 for (x,s) in K.discrete_complementarity_set()])
66
67
68 def motzkin_decomposition(K):
69 r"""
70 Return the pair of components in the Motzkin decomposition of this cone.
71
72 Every convex cone is the direct sum of a strictly convex cone and a
73 linear subspace [Stoer-Witzgall]_. Return a pair ``(P,S)`` of cones
74 such that ``P`` is strictly convex, ``S`` is a subspace, and ``K``
75 is the direct sum of ``P`` and ``S``.
76
77 OUTPUT:
78
79 An ordered pair ``(P,S)`` of closed convex polyhedral cones where
80 ``P`` is strictly convex, ``S`` is a subspace, and ``K`` is the
81 direct sum of ``P`` and ``S``.
82
83 REFERENCES:
84
85 .. [Stoer-Witzgall] J. Stoer and C. Witzgall. Convexity and
86 Optimization in Finite Dimensions I. Springer-Verlag, New
87 York, 1970.
88
89 EXAMPLES:
90
91 The nonnegative orthant is strictly convex, so it is its own
92 strictly convex component and its subspace component is trivial::
93
94 sage: K = Cone([(1,0,0),(0,1,0),(0,0,1)])
95 sage: (P,S) = motzkin_decomposition(K)
96 sage: K.is_equivalent(P)
97 True
98 sage: S.is_trivial()
99 True
100
101 Likewise, full spaces are their own subspace components::
102
103 sage: K = Cone([(1,0),(-1,0),(0,1),(0,-1)])
104 sage: K.is_full_space()
105 True
106 sage: (P,S) = motzkin_decomposition(K)
107 sage: K.is_equivalent(S)
108 True
109 sage: P.is_trivial()
110 True
111
112 TESTS:
113
114 A random point in the cone should belong to either the strictly
115 convex component or the subspace component. If the point is nonzero,
116 it cannot be in both::
117
118 sage: set_random_seed()
119 sage: K = random_cone(max_ambient_dim=8)
120 sage: (P,S) = motzkin_decomposition(K)
121 sage: x = K.random_element()
122 sage: P.contains(x) or S.contains(x)
123 True
124 sage: x.is_zero() or (P.contains(x) != S.contains(x))
125 True
126
127 The strictly convex component should always be strictly convex, and
128 the subspace component should always be a subspace::
129
130 sage: set_random_seed()
131 sage: K = random_cone(max_ambient_dim=8)
132 sage: (P,S) = motzkin_decomposition(K)
133 sage: P.is_strictly_convex()
134 True
135 sage: S.lineality() == S.dim()
136 True
137
138 The generators of the components are obtained from orthogonal
139 projections of the original generators [Stoer-Witzgall]_::
140
141 sage: set_random_seed()
142 sage: K = random_cone(max_ambient_dim=8)
143 sage: (P,S) = motzkin_decomposition(K)
144 sage: A = S.linear_subspace().complement().matrix()
145 sage: proj_S_perp = A.transpose() * (A*A.transpose()).inverse() * A
146 sage: expected_P = Cone([ proj_S_perp*g for g in K ], K.lattice())
147 sage: P.is_equivalent(expected_P)
148 True
149 sage: A = S.linear_subspace().matrix()
150 sage: proj_S = A.transpose() * (A*A.transpose()).inverse() * A
151 sage: expected_S = Cone([ proj_S*g for g in K ], K.lattice())
152 sage: S.is_equivalent(expected_S)
153 True
154 """
155 # The lines() method only gives us one generator for each line,
156 # so we negate the result and combine everything for the full set.
157 S = Cone([p*l for p in [1,-1] for l in K.lines()], K.lattice())
158
159 # Since ``S`` is a subspace, the rays of its dual generate its
160 # orthogonal complement.
161 P = K.intersection( Cone(S.dual(), K.lattice()) )
162
163 return (P,S)
164
165
166 def positive_operator_gens(K):
167 r"""
168 Compute generators of the cone of positive operators on this cone.
169
170 OUTPUT:
171
172 A list of `n`-by-``n`` matrices where ``n == K.lattice_dim()``.
173 Each matrix ``P`` in the list should have the property that ``P*x``
174 is an element of ``K`` whenever ``x`` is an element of
175 ``K``. Moreover, any nonnegative linear combination of these
176 matrices shares the same property.
177
178 EXAMPLES:
179
180 The trivial cone in a trivial space has no positive operators::
181
182 sage: K = Cone([], ToricLattice(0))
183 sage: positive_operator_gens(K)
184 []
185
186 Positive operators on the nonnegative orthant are nonnegative matrices::
187
188 sage: K = Cone([(1,)])
189 sage: positive_operator_gens(K)
190 [[1]]
191
192 sage: K = Cone([(1,0),(0,1)])
193 sage: positive_operator_gens(K)
194 [
195 [1 0] [0 1] [0 0] [0 0]
196 [0 0], [0 0], [1 0], [0 1]
197 ]
198
199 Every operator is positive on the ambient vector space::
200
201 sage: K = Cone([(1,),(-1,)])
202 sage: K.is_full_space()
203 True
204 sage: positive_operator_gens(K)
205 [[1], [-1]]
206
207 sage: K = Cone([(1,0),(-1,0),(0,1),(0,-1)])
208 sage: K.is_full_space()
209 True
210 sage: positive_operator_gens(K)
211 [
212 [1 0] [-1 0] [0 1] [ 0 -1] [0 0] [ 0 0] [0 0] [ 0 0]
213 [0 0], [ 0 0], [0 0], [ 0 0], [1 0], [-1 0], [0 1], [ 0 -1]
214 ]
215
216 TESTS:
217
218 A positive operator on a cone should send its generators into the cone::
219
220 sage: set_random_seed()
221 sage: K = random_cone(max_ambient_dim=5)
222 sage: pi_of_K = positive_operator_gens(K)
223 sage: all([K.contains(p*x) for p in pi_of_K for x in K.rays()])
224 True
225
226 The dimension of the cone of positive operators is given by the
227 corollary in my paper::
228
229 sage: set_random_seed()
230 sage: K = random_cone(max_ambient_dim=5)
231 sage: n = K.lattice_dim()
232 sage: m = K.dim()
233 sage: l = K.lineality()
234 sage: pi_of_K = positive_operator_gens(K)
235 sage: L = ToricLattice(n**2)
236 sage: actual = Cone([p.list() for p in pi_of_K], lattice=L).dim()
237 sage: expected = n**2 - l*(m - l) - (n - m)*m
238 sage: actual == expected
239 True
240
241 The lineality of the cone of positive operators is given by the
242 corollary in my paper::
243
244 sage: set_random_seed()
245 sage: K = random_cone(max_ambient_dim=5)
246 sage: n = K.lattice_dim()
247 sage: pi_of_K = positive_operator_gens(K)
248 sage: L = ToricLattice(n**2)
249 sage: actual = Cone([p.list() for p in pi_of_K], lattice=L).lineality()
250 sage: expected = n**2 - K.dim()*K.dual().dim()
251 sage: actual == expected
252 True
253
254 The cone ``K`` is proper if and only if the cone of positive
255 operators on ``K`` is proper::
256
257 sage: set_random_seed()
258 sage: K = random_cone(max_ambient_dim=5)
259 sage: pi_of_K = positive_operator_gens(K)
260 sage: L = ToricLattice(K.lattice_dim()**2)
261 sage: pi_cone = Cone([p.list() for p in pi_of_K], lattice=L)
262 sage: K.is_proper() == pi_cone.is_proper()
263 True
264 """
265 # Matrices are not vectors in Sage, so we have to convert them
266 # to vectors explicitly before we can find a basis. We need these
267 # two values to construct the appropriate "long vector" space.
268 F = K.lattice().base_field()
269 n = K.lattice_dim()
270
271 tensor_products = [ s.tensor_product(x) for x in K for s in K.dual() ]
272
273 # Convert those tensor products to long vectors.
274 W = VectorSpace(F, n**2)
275 vectors = [ W(tp.list()) for tp in tensor_products ]
276
277 # Create the *dual* cone of the positive operators, expressed as
278 # long vectors..
279 pi_dual = Cone(vectors, ToricLattice(W.dimension()))
280
281 # Now compute the desired cone from its dual...
282 pi_cone = pi_dual.dual()
283
284 # And finally convert its rays back to matrix representations.
285 M = MatrixSpace(F, n)
286 return [ M(v.list()) for v in pi_cone.rays() ]
287
288
289 def Z_transformation_gens(K):
290 r"""
291 Compute generators of the cone of Z-transformations on this cone.
292
293 OUTPUT:
294
295 A list of `n`-by-``n`` matrices where ``n == K.lattice_dim()``.
296 Each matrix ``L`` in the list should have the property that
297 ``(L*x).inner_product(s) <= 0`` whenever ``(x,s)`` is an element the
298 discrete complementarity set of ``K``. Moreover, any nonnegative
299 linear combination of these matrices shares the same property.
300
301 EXAMPLES:
302
303 Z-transformations on the nonnegative orthant are just Z-matrices.
304 That is, matrices whose off-diagonal elements are nonnegative::
305
306 sage: K = Cone([(1,0),(0,1)])
307 sage: Z_transformation_gens(K)
308 [
309 [ 0 -1] [ 0 0] [-1 0] [1 0] [ 0 0] [0 0]
310 [ 0 0], [-1 0], [ 0 0], [0 0], [ 0 -1], [0 1]
311 ]
312 sage: K = Cone([(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)])
313 sage: all([ z[i][j] <= 0 for z in Z_transformation_gens(K)
314 ....: for i in range(z.nrows())
315 ....: for j in range(z.ncols())
316 ....: if i != j ])
317 True
318
319 The trivial cone in a trivial space has no Z-transformations::
320
321 sage: K = Cone([], ToricLattice(0))
322 sage: Z_transformation_gens(K)
323 []
324
325 Z-transformations on a subspace are Lyapunov-like and vice-versa::
326
327 sage: K = Cone([(1,0),(-1,0),(0,1),(0,-1)])
328 sage: K.is_full_space()
329 True
330 sage: lls = span([ vector(l.list()) for l in K.lyapunov_like_basis() ])
331 sage: zs = span([ vector(z.list()) for z in Z_transformation_gens(K) ])
332 sage: zs == lls
333 True
334
335 TESTS:
336
337 The Z-property is possessed by every Z-transformation::
338
339 sage: set_random_seed()
340 sage: K = random_cone(max_ambient_dim=6)
341 sage: Z_of_K = Z_transformation_gens(K)
342 sage: dcs = K.discrete_complementarity_set()
343 sage: all([(z*x).inner_product(s) <= 0 for z in Z_of_K
344 ....: for (x,s) in dcs])
345 True
346
347 The lineality space of Z is LL::
348
349 sage: set_random_seed()
350 sage: K = random_cone(min_ambient_dim=1, max_ambient_dim=6)
351 sage: lls = span([ vector(l.list()) for l in K.lyapunov_like_basis() ])
352 sage: z_cone = Cone([ z.list() for z in Z_transformation_gens(K) ])
353 sage: z_cone.linear_subspace() == lls
354 True
355
356 And thus, the lineality of Z is the Lyapunov rank::
357
358 sage: set_random_seed()
359 sage: K = random_cone(max_ambient_dim=6)
360 sage: Z_of_K = Z_transformation_gens(K)
361 sage: L = ToricLattice(K.lattice_dim()**2)
362 sage: z_cone = Cone([ z.list() for z in Z_of_K ], lattice=L)
363 sage: z_cone.lineality() == K.lyapunov_rank()
364 True
365
366 The lineality spaces of pi-star and Z-star are equal:
367
368 sage: set_random_seed()
369 sage: K = random_cone(max_ambient_dim=5)
370 sage: pi_of_K = positive_operator_gens(K)
371 sage: Z_of_K = Z_transformation_gens(K)
372 sage: L = ToricLattice(K.lattice_dim()**2)
373 sage: pi_star = Cone([p.list() for p in pi_of_K], lattice=L).dual()
374 sage: z_star = Cone([ z.list() for z in Z_of_K], lattice=L).dual()
375 sage: pi_star.linear_subspace() == z_star.linear_subspace()
376 True
377 """
378 # Matrices are not vectors in Sage, so we have to convert them
379 # to vectors explicitly before we can find a basis. We need these
380 # two values to construct the appropriate "long vector" space.
381 F = K.lattice().base_field()
382 n = K.lattice_dim()
383
384 # These tensor products contain generators for the dual cone of
385 # the cross-positive transformations.
386 tensor_products = [ s.tensor_product(x)
387 for (x,s) in K.discrete_complementarity_set() ]
388
389 # Turn our matrices into long vectors...
390 W = VectorSpace(F, n**2)
391 vectors = [ W(m.list()) for m in tensor_products ]
392
393 # Create the *dual* cone of the cross-positive operators,
394 # expressed as long vectors..
395 Sigma_dual = Cone(vectors, lattice=ToricLattice(W.dimension()))
396
397 # Now compute the desired cone from its dual...
398 Sigma_cone = Sigma_dual.dual()
399
400 # And finally convert its rays back to matrix representations.
401 # But first, make them negative, so we get Z-transformations and
402 # not cross-positive ones.
403 M = MatrixSpace(F, n)
404 return [ -M(v.list()) for v in Sigma_cone.rays() ]
405
406
407 def Z_cone(K):
408 gens = Z_transformation_gens(K)
409 L = None
410 if len(gens) == 0:
411 L = ToricLattice(0)
412 return Cone([ g.list() for g in gens ], lattice=L)
413
414 def pi_cone(K):
415 gens = positive_operator_gens(K)
416 L = None
417 if len(gens) == 0:
418 L = ToricLattice(0)
419 return Cone([ g.list() for g in gens ], lattice=L)