]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/cone/cone.py
Very rough first implementation of pointed_decomposition().
[sage.d.git] / mjo / cone / cone.py
1 from sage.all import *
2
3 def is_lyapunov_like(L,K):
4 r"""
5 Determine whether or not ``L`` is Lyapunov-like on ``K``.
6
7 We say that ``L`` is Lyapunov-like on ``K`` if `\left\langle
8 L\left\lparenx\right\rparen,s\right\rangle = 0` for all pairs
9 `\left\langle x,s \right\rangle` in the complementarity set of
10 ``K``. It is known [Orlitzky]_ that this property need only be
11 checked for generators of ``K`` and its dual.
12
13 INPUT:
14
15 - ``L`` -- A linear transformation or matrix.
16
17 - ``K`` -- A polyhedral closed convex cone.
18
19 OUTPUT:
20
21 ``True`` if it can be proven that ``L`` is Lyapunov-like on ``K``,
22 and ``False`` otherwise.
23
24 .. WARNING::
25
26 If this function returns ``True``, then ``L`` is Lyapunov-like
27 on ``K``. However, if ``False`` is returned, that could mean one
28 of two things. The first is that ``L`` is definitely not
29 Lyapunov-like on ``K``. The second is more of an "I don't know"
30 answer, returned (for example) if we cannot prove that an inner
31 product is zero.
32
33 REFERENCES:
34
35 M. Orlitzky. The Lyapunov rank of an improper cone.
36 http://www.optimization-online.org/DB_HTML/2015/10/5135.html
37
38 EXAMPLES:
39
40 The identity is always Lyapunov-like in a nontrivial space::
41
42 sage: set_random_seed()
43 sage: K = random_cone(min_ambient_dim=1, max_ambient_dim=8)
44 sage: L = identity_matrix(K.lattice_dim())
45 sage: is_lyapunov_like(L,K)
46 True
47
48 As is the "zero" transformation::
49
50 sage: K = random_cone(min_ambient_dim=1, max_ambient_dim=8)
51 sage: R = K.lattice().vector_space().base_ring()
52 sage: L = zero_matrix(R, K.lattice_dim())
53 sage: is_lyapunov_like(L,K)
54 True
55
56 Everything in ``K.lyapunov_like_basis()`` should be Lyapunov-like
57 on ``K``::
58
59 sage: K = random_cone(min_ambient_dim=1, max_ambient_dim=6)
60 sage: all([ is_lyapunov_like(L,K) for L in K.lyapunov_like_basis() ])
61 True
62
63 """
64 return all([(L*x).inner_product(s) == 0
65 for (x,s) in K.discrete_complementarity_set()])
66
67
68 def random_element(K):
69 r"""
70 Return a random element of ``K`` from its ambient vector space.
71
72 ALGORITHM:
73
74 The cone ``K`` is specified in terms of its generators, so that
75 ``K`` is equal to the convex conic combination of those generators.
76 To choose a random element of ``K``, we assign random nonnegative
77 coefficients to each generator of ``K`` and construct a new vector
78 from the scaled rays.
79
80 A vector, rather than a ray, is returned so that the element may
81 have non-integer coordinates. Thus the element may have an
82 arbitrarily small norm.
83
84 EXAMPLES:
85
86 A random element of the trivial cone is zero::
87
88 sage: set_random_seed()
89 sage: K = Cone([], ToricLattice(0))
90 sage: random_element(K)
91 ()
92 sage: K = Cone([(0,)])
93 sage: random_element(K)
94 (0)
95 sage: K = Cone([(0,0)])
96 sage: random_element(K)
97 (0, 0)
98 sage: K = Cone([(0,0,0)])
99 sage: random_element(K)
100 (0, 0, 0)
101
102 A random element of the nonnegative orthant should have all
103 components nonnegative::
104
105 sage: set_random_seed()
106 sage: K = Cone([(1,0,0),(0,1,0),(0,0,1)])
107 sage: all([ x >= 0 for x in random_element(K) ])
108 True
109
110 TESTS:
111
112 Any cone should contain a random element of itself::
113
114 sage: set_random_seed()
115 sage: K = random_cone(max_ambient_dim=8)
116 sage: K.contains(random_element(K))
117 True
118
119 A strictly convex cone contains no lines, and thus no negative
120 multiples of any of its elements besides zero::
121
122 sage: set_random_seed()
123 sage: K = random_cone(max_ambient_dim=8, strictly_convex=True)
124 sage: x = random_element(K)
125 sage: x.is_zero() or not K.contains(-x)
126 True
127
128 The sum of random elements of a cone lies in the cone::
129
130 sage: set_random_seed()
131 sage: K = random_cone(max_ambient_dim=8)
132 sage: K.contains(sum([random_element(K) for i in range(10)]))
133 True
134
135 """
136 V = K.lattice().vector_space()
137 scaled_gens = [ V.base_field().random_element().abs()*V(r) for r in K ]
138
139 # Make sure we return a vector. Without the coercion, we might
140 # return ``0`` when ``K`` has no rays.
141 return V(sum(scaled_gens))
142
143
144 def pointed_decomposition(K):
145 """
146 Every convex cone is the direct sum of a pointed cone and a linear
147 subspace. Return a pair ``(P,S)`` of cones such that ``P`` is
148 pointed, ``S`` is a subspace, and ``K`` is the direct sum of ``P``
149 and ``S``.
150
151 OUTPUT:
152
153 An ordered pair ``(P,S)`` of closed convex polyhedral cones where
154 ``P`` is pointed, ``S`` is a subspace, and ``K`` is the direct sum
155 of ``P`` and ``S``.
156
157 TESTS:
158
159 sage: set_random_seed()
160 sage: K = random_cone(max_ambient_dim=8)
161 sage: (P,S) = pointed_decomposition(K)
162 sage: x = random_element(K)
163 sage: P.contains(x) or S.contains(x)
164 True
165 sage: x.is_zero() or (P.contains(x) != S.contains(x))
166 True
167 """
168 linspace_gens = [ copy(b) for b in K.linear_subspace().basis() ]
169 linspace_gens += [ -b for b in linspace_gens ]
170
171 S = Cone(linspace_gens, K.lattice())
172
173 # Since ``S`` is a subspace, its dual is its orthogonal complement
174 # (albeit in the wrong lattice).
175 S_perp = Cone(S.dual(), K.lattice())
176 P = K.intersection(S_perp)
177
178 return (P,S)
179
180 def positive_operator_gens(K):
181 r"""
182 Compute generators of the cone of positive operators on this cone.
183
184 OUTPUT:
185
186 A list of `n`-by-``n`` matrices where ``n == K.lattice_dim()``.
187 Each matrix ``P`` in the list should have the property that ``P*x``
188 is an element of ``K`` whenever ``x`` is an element of
189 ``K``. Moreover, any nonnegative linear combination of these
190 matrices shares the same property.
191
192 EXAMPLES:
193
194 The trivial cone in a trivial space has no positive operators::
195
196 sage: K = Cone([], ToricLattice(0))
197 sage: positive_operator_gens(K)
198 []
199
200 Positive operators on the nonnegative orthant are nonnegative matrices::
201
202 sage: K = Cone([(1,)])
203 sage: positive_operator_gens(K)
204 [[1]]
205
206 sage: K = Cone([(1,0),(0,1)])
207 sage: positive_operator_gens(K)
208 [
209 [1 0] [0 1] [0 0] [0 0]
210 [0 0], [0 0], [1 0], [0 1]
211 ]
212
213 Every operator is positive on the ambient vector space::
214
215 sage: K = Cone([(1,),(-1,)])
216 sage: K.is_full_space()
217 True
218 sage: positive_operator_gens(K)
219 [[1], [-1]]
220
221 sage: K = Cone([(1,0),(-1,0),(0,1),(0,-1)])
222 sage: K.is_full_space()
223 True
224 sage: positive_operator_gens(K)
225 [
226 [1 0] [-1 0] [0 1] [ 0 -1] [0 0] [ 0 0] [0 0] [ 0 0]
227 [0 0], [ 0 0], [0 0], [ 0 0], [1 0], [-1 0], [0 1], [ 0 -1]
228 ]
229
230 TESTS:
231
232 A positive operator on a cone should send its generators into the cone::
233
234 sage: set_random_seed()
235 sage: K = random_cone(max_ambient_dim=5)
236 sage: pi_of_K = positive_operator_gens(K)
237 sage: all([K.contains(p*x) for p in pi_of_K for x in K.rays()])
238 True
239
240 The dimension of the cone of positive operators is given by the
241 corollary in my paper::
242
243 sage: set_random_seed()
244 sage: K = random_cone(max_ambient_dim=5)
245 sage: n = K.lattice_dim()
246 sage: m = K.dim()
247 sage: l = K.lineality()
248 sage: pi_of_K = positive_operator_gens(K)
249 sage: L = ToricLattice(n**2)
250 sage: actual = Cone([p.list() for p in pi_of_K], lattice=L).dim()
251 sage: expected = n**2 - l*(m - l) - (n - m)*m
252 sage: actual == expected
253 True
254
255 The lineality of the cone of positive operators is given by the
256 corollary in my paper::
257
258 sage: set_random_seed()
259 sage: K = random_cone(max_ambient_dim=5)
260 sage: n = K.lattice_dim()
261 sage: pi_of_K = positive_operator_gens(K)
262 sage: L = ToricLattice(n**2)
263 sage: actual = Cone([p.list() for p in pi_of_K], lattice=L).lineality()
264 sage: expected = n**2 - K.dim()*K.dual().dim()
265 sage: actual == expected
266 True
267
268 The cone ``K`` is proper if and only if the cone of positive
269 operators on ``K`` is proper::
270
271 sage: set_random_seed()
272 sage: K = random_cone(max_ambient_dim=5)
273 sage: pi_of_K = positive_operator_gens(K)
274 sage: L = ToricLattice(K.lattice_dim()**2)
275 sage: pi_cone = Cone([p.list() for p in pi_of_K], lattice=L)
276 sage: K.is_proper() == pi_cone.is_proper()
277 True
278 """
279 # Matrices are not vectors in Sage, so we have to convert them
280 # to vectors explicitly before we can find a basis. We need these
281 # two values to construct the appropriate "long vector" space.
282 F = K.lattice().base_field()
283 n = K.lattice_dim()
284
285 tensor_products = [ s.tensor_product(x) for x in K for s in K.dual() ]
286
287 # Convert those tensor products to long vectors.
288 W = VectorSpace(F, n**2)
289 vectors = [ W(tp.list()) for tp in tensor_products ]
290
291 # Create the *dual* cone of the positive operators, expressed as
292 # long vectors..
293 pi_dual = Cone(vectors, ToricLattice(W.dimension()))
294
295 # Now compute the desired cone from its dual...
296 pi_cone = pi_dual.dual()
297
298 # And finally convert its rays back to matrix representations.
299 M = MatrixSpace(F, n)
300 return [ M(v.list()) for v in pi_cone.rays() ]
301
302
303 def Z_transformation_gens(K):
304 r"""
305 Compute generators of the cone of Z-transformations on this cone.
306
307 OUTPUT:
308
309 A list of `n`-by-``n`` matrices where ``n == K.lattice_dim()``.
310 Each matrix ``L`` in the list should have the property that
311 ``(L*x).inner_product(s) <= 0`` whenever ``(x,s)`` is an element the
312 discrete complementarity set of ``K``. Moreover, any nonnegative
313 linear combination of these matrices shares the same property.
314
315 EXAMPLES:
316
317 Z-transformations on the nonnegative orthant are just Z-matrices.
318 That is, matrices whose off-diagonal elements are nonnegative::
319
320 sage: K = Cone([(1,0),(0,1)])
321 sage: Z_transformation_gens(K)
322 [
323 [ 0 -1] [ 0 0] [-1 0] [1 0] [ 0 0] [0 0]
324 [ 0 0], [-1 0], [ 0 0], [0 0], [ 0 -1], [0 1]
325 ]
326 sage: K = Cone([(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)])
327 sage: all([ z[i][j] <= 0 for z in Z_transformation_gens(K)
328 ....: for i in range(z.nrows())
329 ....: for j in range(z.ncols())
330 ....: if i != j ])
331 True
332
333 The trivial cone in a trivial space has no Z-transformations::
334
335 sage: K = Cone([], ToricLattice(0))
336 sage: Z_transformation_gens(K)
337 []
338
339 Z-transformations on a subspace are Lyapunov-like and vice-versa::
340
341 sage: K = Cone([(1,0),(-1,0),(0,1),(0,-1)])
342 sage: K.is_full_space()
343 True
344 sage: lls = span([ vector(l.list()) for l in K.lyapunov_like_basis() ])
345 sage: zs = span([ vector(z.list()) for z in Z_transformation_gens(K) ])
346 sage: zs == lls
347 True
348
349 TESTS:
350
351 The Z-property is possessed by every Z-transformation::
352
353 sage: set_random_seed()
354 sage: K = random_cone(max_ambient_dim=6)
355 sage: Z_of_K = Z_transformation_gens(K)
356 sage: dcs = K.discrete_complementarity_set()
357 sage: all([(z*x).inner_product(s) <= 0 for z in Z_of_K
358 ....: for (x,s) in dcs])
359 True
360
361 The lineality space of Z is LL::
362
363 sage: set_random_seed()
364 sage: K = random_cone(min_ambient_dim=1, max_ambient_dim=6)
365 sage: lls = span([ vector(l.list()) for l in K.lyapunov_like_basis() ])
366 sage: z_cone = Cone([ z.list() for z in Z_transformation_gens(K) ])
367 sage: z_cone.linear_subspace() == lls
368 True
369
370 And thus, the lineality of Z is the Lyapunov rank::
371
372 sage: set_random_seed()
373 sage: K = random_cone(max_ambient_dim=6)
374 sage: Z_of_K = Z_transformation_gens(K)
375 sage: L = ToricLattice(K.lattice_dim()**2)
376 sage: z_cone = Cone([ z.list() for z in Z_of_K ], lattice=L)
377 sage: z_cone.lineality() == K.lyapunov_rank()
378 True
379
380 The lineality spaces of pi-star and Z-star are equal:
381
382 sage: set_random_seed()
383 sage: K = random_cone(max_ambient_dim=5)
384 sage: pi_of_K = positive_operator_gens(K)
385 sage: Z_of_K = Z_transformation_gens(K)
386 sage: L = ToricLattice(K.lattice_dim()**2)
387 sage: pi_star = Cone([p.list() for p in pi_of_K], lattice=L).dual()
388 sage: z_star = Cone([ z.list() for z in Z_of_K], lattice=L).dual()
389 sage: pi_star.linear_subspace() == z_star.linear_subspace()
390 True
391 """
392 # Matrices are not vectors in Sage, so we have to convert them
393 # to vectors explicitly before we can find a basis. We need these
394 # two values to construct the appropriate "long vector" space.
395 F = K.lattice().base_field()
396 n = K.lattice_dim()
397
398 # These tensor products contain generators for the dual cone of
399 # the cross-positive transformations.
400 tensor_products = [ s.tensor_product(x)
401 for (x,s) in K.discrete_complementarity_set() ]
402
403 # Turn our matrices into long vectors...
404 W = VectorSpace(F, n**2)
405 vectors = [ W(m.list()) for m in tensor_products ]
406
407 # Create the *dual* cone of the cross-positive operators,
408 # expressed as long vectors..
409 Sigma_dual = Cone(vectors, lattice=ToricLattice(W.dimension()))
410
411 # Now compute the desired cone from its dual...
412 Sigma_cone = Sigma_dual.dual()
413
414 # And finally convert its rays back to matrix representations.
415 # But first, make them negative, so we get Z-transformations and
416 # not cross-positive ones.
417 M = MatrixSpace(F, n)
418 return [ -M(v.list()) for v in Sigma_cone.rays() ]
419
420
421 def Z_cone(K):
422 gens = Z_transformation_gens(K)
423 L = None
424 if len(gens) == 0:
425 L = ToricLattice(0)
426 return Cone([ g.list() for g in gens ], lattice=L)
427
428 def pi_cone(K):
429 gens = positive_operator_gens(K)
430 L = None
431 if len(gens) == 0:
432 L = ToricLattice(0)
433 return Cone([ g.list() for g in gens ], lattice=L)