]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/cone/cone.py
Clean up some notation in tests.
[sage.d.git] / mjo / cone / cone.py
1 from sage.all import *
2
3 def is_lyapunov_like(L,K):
4 r"""
5 Determine whether or not ``L`` is Lyapunov-like on ``K``.
6
7 We say that ``L`` is Lyapunov-like on ``K`` if `\left\langle
8 L\left\lparenx\right\rparen,s\right\rangle = 0` for all pairs
9 `\left\langle x,s \right\rangle` in the complementarity set of
10 ``K``. It is known [Orlitzky]_ that this property need only be
11 checked for generators of ``K`` and its dual.
12
13 INPUT:
14
15 - ``L`` -- A linear transformation or matrix.
16
17 - ``K`` -- A polyhedral closed convex cone.
18
19 OUTPUT:
20
21 ``True`` if it can be proven that ``L`` is Lyapunov-like on ``K``,
22 and ``False`` otherwise.
23
24 .. WARNING::
25
26 If this function returns ``True``, then ``L`` is Lyapunov-like
27 on ``K``. However, if ``False`` is returned, that could mean one
28 of two things. The first is that ``L`` is definitely not
29 Lyapunov-like on ``K``. The second is more of an "I don't know"
30 answer, returned (for example) if we cannot prove that an inner
31 product is zero.
32
33 REFERENCES:
34
35 M. Orlitzky. The Lyapunov rank of an improper cone.
36 http://www.optimization-online.org/DB_HTML/2015/10/5135.html
37
38 EXAMPLES:
39
40 The identity is always Lyapunov-like in a nontrivial space::
41
42 sage: set_random_seed()
43 sage: K = random_cone(min_ambient_dim=1, max_ambient_dim=8)
44 sage: L = identity_matrix(K.lattice_dim())
45 sage: is_lyapunov_like(L,K)
46 True
47
48 As is the "zero" transformation::
49
50 sage: K = random_cone(min_ambient_dim=1, max_ambient_dim=8)
51 sage: R = K.lattice().vector_space().base_ring()
52 sage: L = zero_matrix(R, K.lattice_dim())
53 sage: is_lyapunov_like(L,K)
54 True
55
56 Everything in ``K.lyapunov_like_basis()`` should be Lyapunov-like
57 on ``K``::
58
59 sage: K = random_cone(min_ambient_dim=1, max_ambient_dim=6)
60 sage: all([ is_lyapunov_like(L,K) for L in K.lyapunov_like_basis() ])
61 True
62
63 """
64 return all([(L*x).inner_product(s) == 0
65 for (x,s) in K.discrete_complementarity_set()])
66
67
68 def motzkin_decomposition(K):
69 r"""
70 Return the pair of components in the Motzkin decomposition of this cone.
71
72 Every convex cone is the direct sum of a strictly convex cone and a
73 linear subspace [Stoer-Witzgall]_. Return a pair ``(P,S)`` of cones
74 such that ``P`` is strictly convex, ``S`` is a subspace, and ``K``
75 is the direct sum of ``P`` and ``S``.
76
77 OUTPUT:
78
79 An ordered pair ``(P,S)`` of closed convex polyhedral cones where
80 ``P`` is strictly convex, ``S`` is a subspace, and ``K`` is the
81 direct sum of ``P`` and ``S``.
82
83 REFERENCES:
84
85 .. [Stoer-Witzgall] J. Stoer and C. Witzgall. Convexity and
86 Optimization in Finite Dimensions I. Springer-Verlag, New
87 York, 1970.
88
89 EXAMPLES:
90
91 The nonnegative orthant is strictly convex, so it is its own
92 strictly convex component and its subspace component is trivial::
93
94 sage: K = Cone([(1,0,0),(0,1,0),(0,0,1)])
95 sage: (P,S) = motzkin_decomposition(K)
96 sage: K.is_equivalent(P)
97 True
98 sage: S.is_trivial()
99 True
100
101 Likewise, full spaces are their own subspace components::
102
103 sage: K = Cone([(1,0),(-1,0),(0,1),(0,-1)])
104 sage: K.is_full_space()
105 True
106 sage: (P,S) = motzkin_decomposition(K)
107 sage: K.is_equivalent(S)
108 True
109 sage: P.is_trivial()
110 True
111
112 TESTS:
113
114 A random point in the cone should belong to either the strictly
115 convex component or the subspace component. If the point is nonzero,
116 it cannot be in both::
117
118 sage: set_random_seed()
119 sage: K = random_cone(max_ambient_dim=8)
120 sage: (P,S) = motzkin_decomposition(K)
121 sage: x = K.random_element(ring=QQ)
122 sage: P.contains(x) or S.contains(x)
123 True
124 sage: x.is_zero() or (P.contains(x) != S.contains(x))
125 True
126
127 The strictly convex component should always be strictly convex, and
128 the subspace component should always be a subspace::
129
130 sage: set_random_seed()
131 sage: K = random_cone(max_ambient_dim=8)
132 sage: (P,S) = motzkin_decomposition(K)
133 sage: P.is_strictly_convex()
134 True
135 sage: S.lineality() == S.dim()
136 True
137
138 A strictly convex cone should be equal to its strictly convex component::
139
140 sage: set_random_seed()
141 sage: K = random_cone(max_ambient_dim=8, strictly_convex=True)
142 sage: (P,_) = motzkin_decomposition(K)
143 sage: K.is_equivalent(P)
144 True
145
146 The generators of the components are obtained from orthogonal
147 projections of the original generators [Stoer-Witzgall]_::
148
149 sage: set_random_seed()
150 sage: K = random_cone(max_ambient_dim=8)
151 sage: (P,S) = motzkin_decomposition(K)
152 sage: A = S.linear_subspace().complement().matrix()
153 sage: proj_S_perp = A.transpose() * (A*A.transpose()).inverse() * A
154 sage: expected_P = Cone([ proj_S_perp*g for g in K ], K.lattice())
155 sage: P.is_equivalent(expected_P)
156 True
157 sage: A = S.linear_subspace().matrix()
158 sage: proj_S = A.transpose() * (A*A.transpose()).inverse() * A
159 sage: expected_S = Cone([ proj_S*g for g in K ], K.lattice())
160 sage: S.is_equivalent(expected_S)
161 True
162 """
163 # The lines() method only returns one generator per line. For a true
164 # line, we also need a generator pointing in the opposite direction.
165 S_gens = [ direction*gen for direction in [1,-1] for gen in K.lines() ]
166 S = Cone(S_gens, K.lattice(), check=False)
167
168 # Since ``S`` is a subspace, the rays of its dual generate its
169 # orthogonal complement.
170 S_perp = Cone(S.dual(), K.lattice(), check=False)
171 P = K.intersection(S_perp)
172
173 return (P,S)
174
175
176 def positive_operator_gens(K):
177 r"""
178 Compute generators of the cone of positive operators on this cone.
179
180 OUTPUT:
181
182 A list of `n`-by-``n`` matrices where ``n == K.lattice_dim()``.
183 Each matrix ``P`` in the list should have the property that ``P*x``
184 is an element of ``K`` whenever ``x`` is an element of
185 ``K``. Moreover, any nonnegative linear combination of these
186 matrices shares the same property.
187
188 EXAMPLES:
189
190 Positive operators on the nonnegative orthant are nonnegative matrices::
191
192 sage: K = Cone([(1,)])
193 sage: positive_operator_gens(K)
194 [[1]]
195
196 sage: K = Cone([(1,0),(0,1)])
197 sage: positive_operator_gens(K)
198 [
199 [1 0] [0 1] [0 0] [0 0]
200 [0 0], [0 0], [1 0], [0 1]
201 ]
202
203 The trivial cone in a trivial space has no positive operators::
204
205 sage: K = Cone([], ToricLattice(0))
206 sage: positive_operator_gens(K)
207 []
208
209 Every operator is positive on the trivial cone::
210
211 sage: K = Cone([(0,)])
212 sage: positive_operator_gens(K)
213 [[1], [-1]]
214
215 sage: K = Cone([(0,0)])
216 sage: K.is_trivial()
217 True
218 sage: positive_operator_gens(K)
219 [
220 [1 0] [-1 0] [0 1] [ 0 -1] [0 0] [ 0 0] [0 0] [ 0 0]
221 [0 0], [ 0 0], [0 0], [ 0 0], [1 0], [-1 0], [0 1], [ 0 -1]
222 ]
223
224 Every operator is positive on the ambient vector space::
225
226 sage: K = Cone([(1,),(-1,)])
227 sage: K.is_full_space()
228 True
229 sage: positive_operator_gens(K)
230 [[1], [-1]]
231
232 sage: K = Cone([(1,0),(-1,0),(0,1),(0,-1)])
233 sage: K.is_full_space()
234 True
235 sage: positive_operator_gens(K)
236 [
237 [1 0] [-1 0] [0 1] [ 0 -1] [0 0] [ 0 0] [0 0] [ 0 0]
238 [0 0], [ 0 0], [0 0], [ 0 0], [1 0], [-1 0], [0 1], [ 0 -1]
239 ]
240
241 A non-obvious application is to find the positive operators on the
242 right half-plane::
243
244 sage: K = Cone([(1,0),(0,1),(0,-1)])
245 sage: positive_operator_gens(K)
246 [
247 [1 0] [0 0] [ 0 0] [0 0] [ 0 0]
248 [0 0], [1 0], [-1 0], [0 1], [ 0 -1]
249 ]
250
251 TESTS:
252
253 Each positive operator generator should send the generators of the
254 cone into the cone::
255
256 sage: set_random_seed()
257 sage: K = random_cone(max_ambient_dim=4)
258 sage: pi_of_K = positive_operator_gens(K)
259 sage: all([ K.contains(P*x) for P in pi_of_K for x in K ])
260 True
261
262 Each positive operator generator should send a random element of the
263 cone into the cone::
264
265 sage: set_random_seed()
266 sage: K = random_cone(max_ambient_dim=4)
267 sage: pi_of_K = positive_operator_gens(K)
268 sage: all([ K.contains(P*K.random_element(QQ)) for P in pi_of_K ])
269 True
270
271 A random element of the positive operator cone should send the
272 generators of the cone into the cone::
273
274 sage: set_random_seed()
275 sage: K = random_cone(max_ambient_dim=4)
276 sage: pi_of_K = positive_operator_gens(K)
277 sage: L = ToricLattice(K.lattice_dim()**2)
278 sage: pi_cone = Cone([ g.list() for g in pi_of_K ],
279 ....: lattice=L,
280 ....: check=False)
281 sage: P = matrix(K.lattice_dim(), pi_cone.random_element(QQ).list())
282 sage: all([ K.contains(P*x) for x in K ])
283 True
284
285 A random element of the positive operator cone should send a random
286 element of the cone into the cone::
287
288 sage: set_random_seed()
289 sage: K = random_cone(max_ambient_dim=4)
290 sage: pi_of_K = positive_operator_gens(K)
291 sage: L = ToricLattice(K.lattice_dim()**2)
292 sage: pi_cone = Cone([ g.list() for g in pi_of_K ],
293 ....: lattice=L,
294 ....: check=False)
295 sage: P = matrix(K.lattice_dim(), pi_cone.random_element(QQ).list())
296 sage: K.contains(P*K.random_element(ring=QQ))
297 True
298
299 The lineality space of the dual of the cone of positive operators
300 can be computed from the lineality spaces of the cone and its dual::
301
302 sage: set_random_seed()
303 sage: K = random_cone(max_ambient_dim=4)
304 sage: pi_of_K = positive_operator_gens(K)
305 sage: L = ToricLattice(K.lattice_dim()**2)
306 sage: pi_cone = Cone([ g.list() for g in pi_of_K ],
307 ....: lattice=L,
308 ....: check=False)
309 sage: actual = pi_cone.dual().linear_subspace()
310 sage: U1 = [ vector((s.tensor_product(x)).list())
311 ....: for x in K.lines()
312 ....: for s in K.dual() ]
313 sage: U2 = [ vector((s.tensor_product(x)).list())
314 ....: for x in K
315 ....: for s in K.dual().lines() ]
316 sage: expected = pi_cone.lattice().vector_space().span(U1 + U2)
317 sage: actual == expected
318 True
319
320 The lineality of the dual of the cone of positive operators
321 is known from its lineality space::
322
323 sage: set_random_seed()
324 sage: K = random_cone(max_ambient_dim=4)
325 sage: n = K.lattice_dim()
326 sage: m = K.dim()
327 sage: l = K.lineality()
328 sage: pi_of_K = positive_operator_gens(K)
329 sage: L = ToricLattice(n**2)
330 sage: pi_cone = Cone([p.list() for p in pi_of_K],
331 ....: lattice=L,
332 ....: check=False)
333 sage: actual = pi_cone.dual().lineality()
334 sage: expected = l*(m - l) + m*(n - m)
335 sage: actual == expected
336 True
337
338 The dimension of the cone of positive operators is given by the
339 corollary in my paper::
340
341 sage: set_random_seed()
342 sage: K = random_cone(max_ambient_dim=4)
343 sage: n = K.lattice_dim()
344 sage: m = K.dim()
345 sage: l = K.lineality()
346 sage: pi_of_K = positive_operator_gens(K)
347 sage: L = ToricLattice(n**2)
348 sage: pi_cone = Cone([p.list() for p in pi_of_K],
349 ....: lattice=L,
350 ....: check=False)
351 sage: actual = pi_cone.dim()
352 sage: expected = n**2 - l*(m - l) - (n - m)*m
353 sage: actual == expected
354 True
355
356 The trivial cone, full space, and half-plane all give rise to the
357 expected dimensions::
358
359 sage: n = ZZ.random_element().abs()
360 sage: K = Cone([[0] * n], ToricLattice(n))
361 sage: K.is_trivial()
362 True
363 sage: L = ToricLattice(n^2)
364 sage: pi_of_K = positive_operator_gens(K)
365 sage: pi_cone = Cone([p.list() for p in pi_of_K],
366 ....: lattice=L,
367 ....: check=False)
368 sage: actual = pi_cone.dim()
369 sage: actual == n^2
370 True
371 sage: K = K.dual()
372 sage: K.is_full_space()
373 True
374 sage: pi_of_K = positive_operator_gens(K)
375 sage: pi_cone = Cone([p.list() for p in pi_of_K],
376 ....: lattice=L,
377 ....: check=False)
378 sage: actual = pi_cone.dim()
379 sage: actual == n^2
380 True
381 sage: K = Cone([(1,0),(0,1),(0,-1)])
382 sage: pi_of_K = positive_operator_gens(K)
383 sage: actual = Cone([p.list() for p in pi_of_K], check=False).dim()
384 sage: actual == 3
385 True
386
387 The lineality of the cone of positive operators follows from the
388 description of its generators::
389
390 sage: set_random_seed()
391 sage: K = random_cone(max_ambient_dim=4)
392 sage: n = K.lattice_dim()
393 sage: pi_of_K = positive_operator_gens(K)
394 sage: L = ToricLattice(n**2)
395 sage: pi_cone = Cone([p.list() for p in pi_of_K],
396 ....: lattice=L,
397 ....: check=False)
398 sage: actual = pi_cone.lineality()
399 sage: expected = n**2 - K.dim()*K.dual().dim()
400 sage: actual == expected
401 True
402
403 The trivial cone, full space, and half-plane all give rise to the
404 expected linealities::
405
406 sage: n = ZZ.random_element().abs()
407 sage: K = Cone([[0] * n], ToricLattice(n))
408 sage: K.is_trivial()
409 True
410 sage: L = ToricLattice(n^2)
411 sage: pi_of_K = positive_operator_gens(K)
412 sage: pi_cone = Cone([p.list() for p in pi_of_K],
413 ....: lattice=L,
414 ....: check=False)
415 sage: actual = pi_cone.lineality()
416 sage: actual == n^2
417 True
418 sage: K = K.dual()
419 sage: K.is_full_space()
420 True
421 sage: pi_of_K = positive_operator_gens(K)
422 sage: pi_cone = Cone([p.list() for p in pi_of_K], lattice=L)
423 sage: pi_cone.lineality() == n^2
424 True
425 sage: K = Cone([(1,0),(0,1),(0,-1)])
426 sage: pi_of_K = positive_operator_gens(K)
427 sage: pi_cone = Cone([p.list() for p in pi_of_K], check=False)
428 sage: actual = pi_cone.lineality()
429 sage: actual == 2
430 True
431
432 A cone is proper if and only if its cone of positive operators
433 is proper::
434
435 sage: set_random_seed()
436 sage: K = random_cone(max_ambient_dim=4)
437 sage: pi_of_K = positive_operator_gens(K)
438 sage: L = ToricLattice(K.lattice_dim()**2)
439 sage: pi_cone = Cone([p.list() for p in pi_of_K],
440 ....: lattice=L,
441 ....: check=False)
442 sage: K.is_proper() == pi_cone.is_proper()
443 True
444 """
445 # Matrices are not vectors in Sage, so we have to convert them
446 # to vectors explicitly before we can find a basis. We need these
447 # two values to construct the appropriate "long vector" space.
448 F = K.lattice().base_field()
449 n = K.lattice_dim()
450
451 tensor_products = [ s.tensor_product(x) for x in K for s in K.dual() ]
452
453 # Convert those tensor products to long vectors.
454 W = VectorSpace(F, n**2)
455 vectors = [ W(tp.list()) for tp in tensor_products ]
456
457 check = True
458 if K.is_solid() or K.is_strictly_convex():
459 # The lineality space of either ``K`` or ``K.dual()`` is
460 # trivial and it's easy to show that our generating set is
461 # minimal. I would love a proof that this works when ``K`` is
462 # neither pointed nor solid.
463 #
464 # Note that in that case we can get *duplicates*, since the
465 # tensor product of (x,s) is the same as that of (-x,-s).
466 check = False
467
468 # Create the dual cone of the positive operators, expressed as
469 # long vectors.
470 pi_dual = Cone(vectors, ToricLattice(W.dimension()), check=check)
471
472 # Now compute the desired cone from its dual...
473 pi_cone = pi_dual.dual()
474
475 # And finally convert its rays back to matrix representations.
476 M = MatrixSpace(F, n)
477 return [ M(v.list()) for v in pi_cone ]
478
479
480 def Z_transformation_gens(K):
481 r"""
482 Compute generators of the cone of Z-transformations on this cone.
483
484 OUTPUT:
485
486 A list of `n`-by-``n`` matrices where ``n == K.lattice_dim()``.
487 Each matrix ``L`` in the list should have the property that
488 ``(L*x).inner_product(s) <= 0`` whenever ``(x,s)`` is an element the
489 discrete complementarity set of ``K``. Moreover, any nonnegative
490 linear combination of these matrices shares the same property.
491
492 EXAMPLES:
493
494 Z-transformations on the nonnegative orthant are just Z-matrices.
495 That is, matrices whose off-diagonal elements are nonnegative::
496
497 sage: K = Cone([(1,0),(0,1)])
498 sage: Z_transformation_gens(K)
499 [
500 [ 0 -1] [ 0 0] [-1 0] [1 0] [ 0 0] [0 0]
501 [ 0 0], [-1 0], [ 0 0], [0 0], [ 0 -1], [0 1]
502 ]
503 sage: K = Cone([(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)])
504 sage: all([ z[i][j] <= 0 for z in Z_transformation_gens(K)
505 ....: for i in range(z.nrows())
506 ....: for j in range(z.ncols())
507 ....: if i != j ])
508 True
509
510 The trivial cone in a trivial space has no Z-transformations::
511
512 sage: K = Cone([], ToricLattice(0))
513 sage: Z_transformation_gens(K)
514 []
515
516 Every operator is a Z-transformation on the ambient vector space::
517
518 sage: K = Cone([(1,),(-1,)])
519 sage: K.is_full_space()
520 True
521 sage: Z_transformation_gens(K)
522 [[-1], [1]]
523
524 sage: K = Cone([(1,0),(-1,0),(0,1),(0,-1)])
525 sage: K.is_full_space()
526 True
527 sage: Z_transformation_gens(K)
528 [
529 [-1 0] [1 0] [ 0 -1] [0 1] [ 0 0] [0 0] [ 0 0] [0 0]
530 [ 0 0], [0 0], [ 0 0], [0 0], [-1 0], [1 0], [ 0 -1], [0 1]
531 ]
532
533 A non-obvious application is to find the Z-transformations on the
534 right half-plane::
535
536 sage: K = Cone([(1,0),(0,1),(0,-1)])
537 sage: Z_transformation_gens(K)
538 [
539 [-1 0] [1 0] [ 0 0] [0 0] [ 0 0] [0 0]
540 [ 0 0], [0 0], [-1 0], [1 0], [ 0 -1], [0 1]
541 ]
542
543 Z-transformations on a subspace are Lyapunov-like and vice-versa::
544
545 sage: K = Cone([(1,0),(-1,0),(0,1),(0,-1)])
546 sage: K.is_full_space()
547 True
548 sage: lls = span([ vector(l.list()) for l in K.lyapunov_like_basis() ])
549 sage: zs = span([ vector(z.list()) for z in Z_transformation_gens(K) ])
550 sage: zs == lls
551 True
552
553 TESTS:
554
555 The Z-property is possessed by every Z-transformation::
556
557 sage: set_random_seed()
558 sage: K = random_cone(max_ambient_dim=4)
559 sage: Z_of_K = Z_transformation_gens(K)
560 sage: dcs = K.discrete_complementarity_set()
561 sage: all([(z*x).inner_product(s) <= 0 for z in Z_of_K
562 ....: for (x,s) in dcs])
563 True
564
565 The lineality space of the cone of Z-transformations is the space of
566 Lyapunov-like transformations::
567
568 sage: set_random_seed()
569 sage: K = random_cone(max_ambient_dim=4)
570 sage: L = ToricLattice(K.lattice_dim()**2)
571 sage: Z_cone = Cone([ z.list() for z in Z_transformation_gens(K) ],
572 ....: lattice=L,
573 ....: check=False)
574 sage: ll_basis = [ vector(l.list()) for l in K.lyapunov_like_basis() ]
575 sage: lls = L.vector_space().span(ll_basis)
576 sage: Z_cone.linear_subspace() == lls
577 True
578
579 The lineality of the Z-transformations on a cone is the Lyapunov
580 rank of that cone::
581
582 sage: set_random_seed()
583 sage: K = random_cone(max_ambient_dim=4)
584 sage: Z_of_K = Z_transformation_gens(K)
585 sage: L = ToricLattice(K.lattice_dim()**2)
586 sage: Z_cone = Cone([ z.list() for z in Z_of_K ],
587 ....: lattice=L,
588 ....: check=False)
589 sage: Z_cone.lineality() == K.lyapunov_rank()
590 True
591
592 The lineality spaces of the duals of the positive operator and
593 Z-transformation cones are equal. From this it follows that the
594 dimensions of the Z-transformation cone and positive operator cone
595 are equal::
596
597 sage: set_random_seed()
598 sage: K = random_cone(max_ambient_dim=4)
599 sage: pi_of_K = positive_operator_gens(K)
600 sage: Z_of_K = Z_transformation_gens(K)
601 sage: L = ToricLattice(K.lattice_dim()**2)
602 sage: pi_cone = Cone([p.list() for p in pi_of_K],
603 ....: lattice=L,
604 ....: check=False)
605 sage: Z_cone = Cone([ z.list() for z in Z_of_K],
606 ....: lattice=L,
607 ....: check=False)
608 sage: pi_cone.dim() == Z_cone.dim()
609 True
610 sage: pi_star = pi_cone.dual()
611 sage: z_star = Z_cone.dual()
612 sage: pi_star.linear_subspace() == z_star.linear_subspace()
613 True
614
615 The trivial cone, full space, and half-plane all give rise to the
616 expected dimensions::
617
618 sage: n = ZZ.random_element().abs()
619 sage: K = Cone([[0] * n], ToricLattice(n))
620 sage: K.is_trivial()
621 True
622 sage: L = ToricLattice(n^2)
623 sage: Z_of_K = Z_transformation_gens(K)
624 sage: Z_cone = Cone([z.list() for z in Z_of_K],
625 ....: lattice=L,
626 ....: check=False)
627 sage: actual = Z_cone.dim()
628 sage: actual == n^2
629 True
630 sage: K = K.dual()
631 sage: K.is_full_space()
632 True
633 sage: Z_of_K = Z_transformation_gens(K)
634 sage: Z_cone = Cone([z.list() for z in Z_of_K],
635 ....: lattice=L,
636 ....: check=False)
637 sage: actual = Z_cone.dim()
638 sage: actual == n^2
639 True
640 sage: K = Cone([(1,0),(0,1),(0,-1)])
641 sage: Z_of_K = Z_transformation_gens(K)
642 sage: Z_cone = Cone([z.list() for z in Z_of_K], check=False)
643 sage: Z_cone.dim() == 3
644 True
645 """
646 # Matrices are not vectors in Sage, so we have to convert them
647 # to vectors explicitly before we can find a basis. We need these
648 # two values to construct the appropriate "long vector" space.
649 F = K.lattice().base_field()
650 n = K.lattice_dim()
651
652 # These tensor products contain generators for the dual cone of
653 # the cross-positive transformations.
654 tensor_products = [ s.tensor_product(x)
655 for (x,s) in K.discrete_complementarity_set() ]
656
657 # Turn our matrices into long vectors...
658 W = VectorSpace(F, n**2)
659 vectors = [ W(m.list()) for m in tensor_products ]
660
661 check = True
662 if K.is_solid() or K.is_strictly_convex():
663 # The lineality space of either ``K`` or ``K.dual()`` is
664 # trivial and it's easy to show that our generating set is
665 # minimal. I would love a proof that this works when ``K`` is
666 # neither pointed nor solid.
667 #
668 # Note that in that case we can get *duplicates*, since the
669 # tensor product of (x,s) is the same as that of (-x,-s).
670 check = False
671
672 # Create the dual cone of the cross-positive operators,
673 # expressed as long vectors.
674 Sigma_dual = Cone(vectors, lattice=ToricLattice(W.dimension()), check=check)
675
676 # Now compute the desired cone from its dual...
677 Sigma_cone = Sigma_dual.dual()
678
679 # And finally convert its rays back to matrix representations.
680 # But first, make them negative, so we get Z-transformations and
681 # not cross-positive ones.
682 M = MatrixSpace(F, n)
683 return [ -M(v.list()) for v in Sigma_cone ]
684
685
686 def Z_cone(K):
687 gens = Z_transformation_gens(K)
688 L = ToricLattice(K.lattice_dim()**2)
689 return Cone([ g.list() for g in gens ], lattice=L, check=False)
690
691 def pi_cone(K):
692 gens = positive_operator_gens(K)
693 L = ToricLattice(K.lattice_dim()**2)
694 return Cone([ g.list() for g in gens ], lattice=L, check=False)