]>
gitweb.michael.orlitzky.com - sage.d.git/blob - eja_utils.py
6f8cab6d8019dcbba0be1e81c3872a7ba738f807
1 from sage
.functions
.other
import sqrt
2 from sage
.matrix
.constructor
import matrix
3 from sage
.modules
.free_module_element
import vector
7 Scale the vector, matrix, or cartesian-product-of-those-things
10 This works around the inability to scale certain elements of
11 Cartesian product spaces, as reported in
13 https://trac.sagemath.org/ticket/31435
17 This will do the wrong thing if you feed it a tuple or list.
21 sage: from mjo.eja.eja_utils import _scale
25 sage: v = vector(QQ, (1,2,3))
28 sage: m = matrix(QQ, [[1,2],[3,4]])
29 sage: M = cartesian_product([m.parent(), m.parent()])
30 sage: _scale(M((m,m)), 2)
36 if hasattr(x
, 'cartesian_factors'):
38 return P(tuple( _scale(x_i
, alpha
)
39 for x_i
in x
.cartesian_factors() ))
46 Flatten a vector, matrix, or cartesian product of those things
49 If the entries of the matrix themselves belong to a real vector
50 space (such as the complex numbers which can be thought of as
51 pairs of real numbers), they will also be expanded in vector form
52 and flattened into the list.
56 sage: from mjo.eja.eja_utils import _all2list
57 sage: from mjo.hurwitz import (QuaternionMatrixAlgebra,
59 ....: OctonionMatrixAlgebra)
63 sage: _all2list([[1]])
68 sage: V1 = VectorSpace(QQ,2)
69 sage: V2 = MatrixSpace(QQ,2)
73 sage: y2 = V2([0,1,1,0])
74 sage: _all2list((x1,y1))
76 sage: _all2list((x2,y2))
78 sage: M = cartesian_product([V1,V2])
79 sage: _all2list(M((x1,y1)))
81 sage: _all2list(M((x2,y2)))
86 sage: _all2list(Octonions().one())
87 [1, 0, 0, 0, 0, 0, 0, 0]
88 sage: _all2list(OctonionMatrixAlgebra(1).one())
89 [1, 0, 0, 0, 0, 0, 0, 0]
93 sage: _all2list(QuaternionAlgebra(QQ, -1, -1).one())
95 sage: _all2list(QuaternionMatrixAlgebra(1).one())
100 sage: V1 = VectorSpace(QQ,2)
101 sage: V2 = OctonionMatrixAlgebra(1,field=QQ)
102 sage: C = cartesian_product([V1,V2])
105 sage: _all2list(C( (x1,y1) ))
106 [3, 4, 1, 0, 0, 0, 0, 0, 0, 0]
109 if hasattr(x
, 'list') and hasattr(x
, 'to_vector'):
110 # This avoids calling to_vector() on a matrix algebra with
111 # e.g. quaternions where the returned vector is of the wrong
112 # length (three instead of four) because the quaternions don't
113 # know how many generators they have.
114 return _all2list(x
.list())
116 if hasattr(x
, 'to_vector'):
117 # This works on matrices of e.g. octonions directly, without
118 # first needing to convert them to a list of octonions and
119 # then recursing down into the list. It also avoids the wonky
120 # list(x) when x is an element of a CFM. I don't know what it
121 # returns but it aint the coordinates. This will fall through
122 # to the iterable case the next time around.
123 return _all2list(x
.to_vector())
127 except TypeError: # x is not iterable
131 # Avoid the retardation of list(QQ(1)) == [1].
134 return sum(list( map(_all2list
, xl
) ), [])
139 return vector(m
.base_ring(), m
.list())
142 return matrix(v
.base_ring(), sqrt(v
.degree()), v
.list())
144 def gram_schmidt(v
, inner_product
=None):
146 Perform Gram-Schmidt on the list ``v`` which are assumed to be
147 vectors over the same base ring. Returns a list of orthonormalized
148 vectors over the same base ring, which means that your base ring
149 needs to contain the appropriate roots.
153 sage: from mjo.eja.eja_utils import gram_schmidt
157 If you start with an orthonormal set, you get it back. We can use
158 the rationals here because we don't need any square roots::
160 sage: v1 = vector(QQ, (1,0,0))
161 sage: v2 = vector(QQ, (0,1,0))
162 sage: v3 = vector(QQ, (0,0,1))
164 sage: gram_schmidt(v) == v
167 The usual inner-product and norm are default::
169 sage: v1 = vector(AA,(1,2,3))
170 sage: v2 = vector(AA,(1,-1,6))
171 sage: v3 = vector(AA,(2,1,-1))
173 sage: u = gram_schmidt(v)
174 sage: all( u_i.inner_product(u_i).sqrt() == 1 for u_i in u )
176 sage: bool(u[0].inner_product(u[1]) == 0)
178 sage: bool(u[0].inner_product(u[2]) == 0)
180 sage: bool(u[1].inner_product(u[2]) == 0)
184 But if you supply a custom inner product, the result is
185 orthonormal with respect to that (and not the usual inner
188 sage: v1 = vector(AA,(1,2,3))
189 sage: v2 = vector(AA,(1,-1,6))
190 sage: v3 = vector(AA,(2,1,-1))
192 sage: B = matrix(AA, [ [6, 4, 2],
195 sage: ip = lambda x,y: (B*x).inner_product(y)
196 sage: norm = lambda x: ip(x,x)
197 sage: u = gram_schmidt(v,ip)
198 sage: all( norm(u_i) == 1 for u_i in u )
200 sage: ip(u[0],u[1]).is_zero()
202 sage: ip(u[0],u[2]).is_zero()
204 sage: ip(u[1],u[2]).is_zero()
207 This Gram-Schmidt routine can be used on matrices as well, so long
208 as an appropriate inner-product is provided::
210 sage: E11 = matrix(AA, [ [1,0],
212 sage: E12 = matrix(AA, [ [0,1],
214 sage: E22 = matrix(AA, [ [0,0],
216 sage: I = matrix.identity(AA,2)
217 sage: trace_ip = lambda X,Y: (X*Y).trace()
218 sage: gram_schmidt([E11,E12,I,E22], inner_product=trace_ip)
220 [1 0] [ 0 0.7071067811865475?] [0 0]
221 [0 0], [0.7071067811865475? 0], [0 1]
224 It even works on Cartesian product spaces whose factors are vector
227 sage: V1 = VectorSpace(AA,2)
228 sage: V2 = MatrixSpace(AA,2)
229 sage: M = cartesian_product([V1,V2])
231 sage: x2 = V1([1,-1])
233 sage: y2 = V2([0,1,1,0])
234 sage: z1 = M((x1,y1))
235 sage: z2 = M((x2,y2))
237 ....: return a[0].inner_product(b[0]) + (a[1]*b[1]).trace()
238 sage: U = gram_schmidt([z1,z2], inner_product=ip)
248 Ensure that zero vectors don't get in the way::
250 sage: v1 = vector(AA,(1,2,3))
251 sage: v2 = vector(AA,(1,-1,6))
252 sage: v3 = vector(AA,(0,0,0))
254 sage: len(gram_schmidt(v)) == 2
257 if inner_product
is None:
258 inner_product
= lambda x
,y
: x
.inner_product(y
)
260 ip
= inner_product(x
,x
)
261 # Don't expand the given field; the inner-product's codomain
262 # is already correct. For example QQ(2).sqrt() returns sqrt(2)
263 # in SR, and that will give you weird errors about symbolics
264 # when what's really going wrong is that you're trying to
265 # orthonormalize in QQ.
266 return ip
.parent()(ip
.sqrt())
268 v
= list(v
) # make a copy, don't clobber the input
270 # Drop all zero vectors before we start.
271 v
= [ v_i
for v_i
in v
if not v_i
.is_zero() ]
279 # Our "zero" needs to belong to the right space for sum() to work.
280 zero
= v
[0].parent().zero()
283 if hasattr(v
[0], 'cartesian_factors'):
284 # Only use the slow implementation if necessary.
288 return sc(x
, (inner_product(x
,y
)/inner_product(x
,x
)))
290 # First orthogonalize...
291 for i
in range(1,len(v
)):
292 # Earlier vectors can be made into zero so we have to ignore them.
293 v
[i
] -= sum( (proj(v
[j
],v
[i
])
295 if not v
[j
].is_zero() ),
298 # And now drop all zero vectors again if they were "orthogonalized out."
299 v
= [ v_i
for v_i
in v
if not v_i
.is_zero() ]
301 # Just normalize. If the algebra is missing the roots, we can't add
302 # them here because then our subalgebra would have a bigger field
303 # than the superalgebra.
304 for i
in range(len(v
)):
305 v
[i
] = sc(v
[i
], ~
norm(v
[i
]))