1 from itertools
import izip
3 from sage
.matrix
.constructor
import matrix
4 from sage
.modules
.free_module
import VectorSpace
5 from sage
.modules
.with_basis
.indexed_element
import IndexedFreeModuleElement
7 # TODO: make this unnecessary somehow.
8 from sage
.misc
.lazy_import
import lazy_import
9 lazy_import('mjo.eja.eja_algebra', 'FiniteDimensionalEuclideanJordanAlgebra')
10 lazy_import('mjo.eja.eja_subalgebra',
11 'FiniteDimensionalEuclideanJordanElementSubalgebra')
12 from mjo
.eja
.eja_operator
import FiniteDimensionalEuclideanJordanAlgebraOperator
13 from mjo
.eja
.eja_utils
import _mat2vec
15 class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement
):
17 An element of a Euclidean Jordan algebra.
22 Oh man, I should not be doing this. This hides the "disabled"
23 methods ``left_matrix`` and ``matrix`` from introspection;
24 in particular it removes them from tab-completion.
26 return filter(lambda s
: s
not in ['left_matrix', 'matrix'],
34 Return ``self`` raised to the power ``n``.
36 Jordan algebras are always power-associative; see for
37 example Faraut and Koranyi, Proposition II.1.2 (ii).
39 We have to override this because our superclass uses row
40 vectors instead of column vectors! We, on the other hand,
41 assume column vectors everywhere.
45 sage: from mjo.eja.eja_algebra import random_eja
49 The definition of `x^2` is the unambiguous `x*x`::
51 sage: set_random_seed()
52 sage: x = random_eja().random_element()
56 A few examples of power-associativity::
58 sage: set_random_seed()
59 sage: x = random_eja().random_element()
60 sage: x*(x*x)*(x*x) == x^5
62 sage: (x*x)*(x*x*x) == x^5
65 We also know that powers operator-commute (Koecher, Chapter
68 sage: set_random_seed()
69 sage: x = random_eja().random_element()
70 sage: m = ZZ.random_element(0,10)
71 sage: n = ZZ.random_element(0,10)
72 sage: Lxm = (x^m).operator()
73 sage: Lxn = (x^n).operator()
74 sage: Lxm*Lxn == Lxn*Lxm
79 return self
.parent().one()
83 return (self
**(n
-1))*self
86 def apply_univariate_polynomial(self
, p
):
88 Apply the univariate polynomial ``p`` to this element.
90 A priori, SageMath won't allow us to apply a univariate
91 polynomial to an element of an EJA, because we don't know
92 that EJAs are rings (they are usually not associative). Of
93 course, we know that EJAs are power-associative, so the
94 operation is ultimately kosher. This function sidesteps
95 the CAS to get the answer we want and expect.
99 sage: from mjo.eja.eja_algebra import (RealCartesianProductEJA,
104 sage: R = PolynomialRing(QQ, 't')
106 sage: p = t^4 - t^3 + 5*t - 2
107 sage: J = RealCartesianProductEJA(5)
108 sage: J.one().apply_univariate_polynomial(p) == 3*J.one()
113 We should always get back an element of the algebra::
115 sage: set_random_seed()
116 sage: p = PolynomialRing(QQ, 't').random_element()
117 sage: J = random_eja()
118 sage: x = J.random_element()
119 sage: x.apply_univariate_polynomial(p) in J
123 if len(p
.variables()) > 1:
124 raise ValueError("not a univariate polynomial")
127 # Convert the coeficcients to the parent's base ring,
128 # because a priori they might live in an (unnecessarily)
129 # larger ring for which P.sum() would fail below.
130 cs
= [ R(c
) for c
in p
.coefficients(sparse
=False) ]
131 return P
.sum( cs
[k
]*(self
**k
) for k
in range(len(cs
)) )
134 def characteristic_polynomial(self
):
136 Return the characteristic polynomial of this element.
140 sage: from mjo.eja.eja_algebra import RealCartesianProductEJA
144 The rank of `R^3` is three, and the minimal polynomial of
145 the identity element is `(t-1)` from which it follows that
146 the characteristic polynomial should be `(t-1)^3`::
148 sage: J = RealCartesianProductEJA(3)
149 sage: J.one().characteristic_polynomial()
150 t^3 - 3*t^2 + 3*t - 1
152 Likewise, the characteristic of the zero element in the
153 rank-three algebra `R^{n}` should be `t^{3}`::
155 sage: J = RealCartesianProductEJA(3)
156 sage: J.zero().characteristic_polynomial()
161 The characteristic polynomial of an element should evaluate
162 to zero on that element::
164 sage: set_random_seed()
165 sage: x = RealCartesianProductEJA(3).random_element()
166 sage: p = x.characteristic_polynomial()
167 sage: x.apply_univariate_polynomial(p)
170 The characteristic polynomials of the zero and unit elements
171 should be what we think they are in a subalgebra, too::
173 sage: J = RealCartesianProductEJA(3)
174 sage: p1 = J.one().characteristic_polynomial()
175 sage: q1 = J.zero().characteristic_polynomial()
176 sage: e0,e1,e2 = J.gens()
177 sage: A = (e0 + 2*e1 + 3*e2).subalgebra_generated_by() # dim 3
178 sage: p2 = A.one().characteristic_polynomial()
179 sage: q2 = A.zero().characteristic_polynomial()
186 p
= self
.parent().characteristic_polynomial()
187 return p(*self
.to_vector())
190 def inner_product(self
, other
):
192 Return the parent algebra's inner product of myself and ``other``.
196 sage: from mjo.eja.eja_algebra import (
197 ....: ComplexHermitianEJA,
199 ....: QuaternionHermitianEJA,
200 ....: RealSymmetricEJA,
205 The inner product in the Jordan spin algebra is the usual
206 inner product on `R^n` (this example only works because the
207 basis for the Jordan algebra is the standard basis in `R^n`)::
209 sage: J = JordanSpinEJA(3)
210 sage: x = vector(QQ,[1,2,3])
211 sage: y = vector(QQ,[4,5,6])
212 sage: x.inner_product(y)
214 sage: J.from_vector(x).inner_product(J.from_vector(y))
217 The inner product on `S^n` is `<X,Y> = trace(X*Y)`, where
218 multiplication is the usual matrix multiplication in `S^n`,
219 so the inner product of the identity matrix with itself
222 sage: J = RealSymmetricEJA(3)
223 sage: J.one().inner_product(J.one())
226 Likewise, the inner product on `C^n` is `<X,Y> =
227 Re(trace(X*Y))`, where we must necessarily take the real
228 part because the product of Hermitian matrices may not be
231 sage: J = ComplexHermitianEJA(3)
232 sage: J.one().inner_product(J.one())
235 Ditto for the quaternions::
237 sage: J = QuaternionHermitianEJA(3)
238 sage: J.one().inner_product(J.one())
243 Ensure that we can always compute an inner product, and that
244 it gives us back a real number::
246 sage: set_random_seed()
247 sage: J = random_eja()
248 sage: x,y = J.random_elements(2)
249 sage: x.inner_product(y) in RLF
255 raise TypeError("'other' must live in the same algebra")
257 return P
.inner_product(self
, other
)
260 def operator_commutes_with(self
, other
):
262 Return whether or not this element operator-commutes
267 sage: from mjo.eja.eja_algebra import random_eja
271 The definition of a Jordan algebra says that any element
272 operator-commutes with its square::
274 sage: set_random_seed()
275 sage: x = random_eja().random_element()
276 sage: x.operator_commutes_with(x^2)
281 Test Lemma 1 from Chapter III of Koecher::
283 sage: set_random_seed()
284 sage: u,v = random_eja().random_elements(2)
285 sage: lhs = u.operator_commutes_with(u*v)
286 sage: rhs = v.operator_commutes_with(u^2)
290 Test the first polarization identity from my notes, Koecher
291 Chapter III, or from Baes (2.3)::
293 sage: set_random_seed()
294 sage: x,y = random_eja().random_elements(2)
295 sage: Lx = x.operator()
296 sage: Ly = y.operator()
297 sage: Lxx = (x*x).operator()
298 sage: Lxy = (x*y).operator()
299 sage: bool(2*Lx*Lxy + Ly*Lxx == 2*Lxy*Lx + Lxx*Ly)
302 Test the second polarization identity from my notes or from
305 sage: set_random_seed()
306 sage: x,y,z = random_eja().random_elements(3)
307 sage: Lx = x.operator()
308 sage: Ly = y.operator()
309 sage: Lz = z.operator()
310 sage: Lzy = (z*y).operator()
311 sage: Lxy = (x*y).operator()
312 sage: Lxz = (x*z).operator()
313 sage: bool(Lx*Lzy + Lz*Lxy + Ly*Lxz == Lzy*Lx + Lxy*Lz + Lxz*Ly)
316 Test the third polarization identity from my notes or from
319 sage: set_random_seed()
320 sage: u,y,z = random_eja().random_elements(3)
321 sage: Lu = u.operator()
322 sage: Ly = y.operator()
323 sage: Lz = z.operator()
324 sage: Lzy = (z*y).operator()
325 sage: Luy = (u*y).operator()
326 sage: Luz = (u*z).operator()
327 sage: Luyz = (u*(y*z)).operator()
328 sage: lhs = Lu*Lzy + Lz*Luy + Ly*Luz
329 sage: rhs = Luyz + Ly*Lu*Lz + Lz*Lu*Ly
330 sage: bool(lhs == rhs)
334 if not other
in self
.parent():
335 raise TypeError("'other' must live in the same algebra")
344 Return my determinant, the product of my eigenvalues.
348 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
353 sage: J = JordanSpinEJA(2)
354 sage: e0,e1 = J.gens()
355 sage: x = sum( J.gens() )
361 sage: J = JordanSpinEJA(3)
362 sage: e0,e1,e2 = J.gens()
363 sage: x = sum( J.gens() )
369 An element is invertible if and only if its determinant is
372 sage: set_random_seed()
373 sage: x = random_eja().random_element()
374 sage: x.is_invertible() == (x.det() != 0)
377 Ensure that the determinant is multiplicative on an associative
378 subalgebra as in Faraut and Koranyi's Proposition II.2.2::
380 sage: set_random_seed()
381 sage: J = random_eja().random_element().subalgebra_generated_by()
382 sage: x,y = J.random_elements(2)
383 sage: (x*y).det() == x.det()*y.det()
389 p
= P
._charpoly
_coeff
(0)
390 # The _charpoly_coeff function already adds the factor of
391 # -1 to ensure that _charpoly_coeff(0) is really what
392 # appears in front of t^{0} in the charpoly. However,
393 # we want (-1)^r times THAT for the determinant.
394 return ((-1)**r
)*p(*self
.to_vector())
399 Return the Jordan-multiplicative inverse of this element.
403 We appeal to the quadratic representation as in Koecher's
404 Theorem 12 in Chapter III, Section 5.
408 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
413 The inverse in the spin factor algebra is given in Alizadeh's
416 sage: set_random_seed()
417 sage: J = JordanSpinEJA.random_instance()
418 sage: x = J.random_element()
419 sage: while not x.is_invertible():
420 ....: x = J.random_element()
421 sage: x_vec = x.to_vector()
423 sage: x_bar = x_vec[1:]
424 sage: coeff = ~(x0^2 - x_bar.inner_product(x_bar))
425 sage: inv_vec = x_vec.parent()([x0] + (-x_bar).list())
426 sage: x_inverse = coeff*inv_vec
427 sage: x.inverse() == J.from_vector(x_inverse)
432 The identity element is its own inverse::
434 sage: set_random_seed()
435 sage: J = random_eja()
436 sage: J.one().inverse() == J.one()
439 If an element has an inverse, it acts like one::
441 sage: set_random_seed()
442 sage: J = random_eja()
443 sage: x = J.random_element()
444 sage: (not x.is_invertible()) or (x.inverse()*x == J.one())
447 The inverse of the inverse is what we started with::
449 sage: set_random_seed()
450 sage: J = random_eja()
451 sage: x = J.random_element()
452 sage: (not x.is_invertible()) or (x.inverse().inverse() == x)
455 The zero element is never invertible::
457 sage: set_random_seed()
458 sage: J = random_eja().zero().inverse()
459 Traceback (most recent call last):
461 ValueError: element is not invertible
464 if not self
.is_invertible():
465 raise ValueError("element is not invertible")
467 return (~self
.quadratic_representation())(self
)
470 def is_invertible(self
):
472 Return whether or not this element is invertible.
476 The usual way to do this is to check if the determinant is
477 zero, but we need the characteristic polynomial for the
478 determinant. The minimal polynomial is a lot easier to get,
479 so we use Corollary 2 in Chapter V of Koecher to check
480 whether or not the paren't algebra's zero element is a root
481 of this element's minimal polynomial.
483 Beware that we can't use the superclass method, because it
484 relies on the algebra being associative.
488 sage: from mjo.eja.eja_algebra import random_eja
492 The identity element is always invertible::
494 sage: set_random_seed()
495 sage: J = random_eja()
496 sage: J.one().is_invertible()
499 The zero element is never invertible in a non-trivial algebra::
501 sage: set_random_seed()
502 sage: J = random_eja()
503 sage: (not J.is_trivial()) and J.zero().is_invertible()
508 if self
.parent().is_trivial():
513 # In fact, we only need to know if the constant term is non-zero,
514 # so we can pass in the field's zero element instead.
515 zero
= self
.base_ring().zero()
516 p
= self
.minimal_polynomial()
517 return not (p(zero
) == zero
)
520 def is_nilpotent(self
):
522 Return whether or not some power of this element is zero.
526 We use Theorem 5 in Chapter III of Koecher, which says that
527 an element ``x`` is nilpotent if and only if ``x.operator()``
528 is nilpotent. And it is a basic fact of linear algebra that
529 an operator on an `n`-dimensional space is nilpotent if and
530 only if, when raised to the `n`th power, it equals the zero
531 operator (for example, see Axler Corollary 8.8).
535 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
540 sage: J = JordanSpinEJA(3)
541 sage: x = sum(J.gens())
542 sage: x.is_nilpotent()
547 The identity element is never nilpotent::
549 sage: set_random_seed()
550 sage: random_eja().one().is_nilpotent()
553 The additive identity is always nilpotent::
555 sage: set_random_seed()
556 sage: random_eja().zero().is_nilpotent()
561 zero_operator
= P
.zero().operator()
562 return self
.operator()**P
.dimension() == zero_operator
565 def is_regular(self
):
567 Return whether or not this is a regular element.
571 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
576 The identity element always has degree one, but any element
577 linearly-independent from it is regular::
579 sage: J = JordanSpinEJA(5)
580 sage: J.one().is_regular()
582 sage: e0, e1, e2, e3, e4 = J.gens() # e0 is the identity
583 sage: for x in J.gens():
584 ....: (J.one() + x).is_regular()
593 The zero element should never be regular, unless the parent
594 algebra has dimension one::
596 sage: set_random_seed()
597 sage: J = random_eja()
598 sage: J.dimension() == 1 or not J.zero().is_regular()
601 The unit element isn't regular unless the algebra happens to
602 consist of only its scalar multiples::
604 sage: set_random_seed()
605 sage: J = random_eja()
606 sage: J.dimension() == 1 or not J.one().is_regular()
610 return self
.degree() == self
.parent().rank()
615 Return the degree of this element, which is defined to be
616 the degree of its minimal polynomial.
620 For now, we skip the messy minimal polynomial computation
621 and instead return the dimension of the vector space spanned
622 by the powers of this element. The latter is a bit more
623 straightforward to compute.
627 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
632 sage: J = JordanSpinEJA(4)
633 sage: J.one().degree()
635 sage: e0,e1,e2,e3 = J.gens()
636 sage: (e0 - e1).degree()
639 In the spin factor algebra (of rank two), all elements that
640 aren't multiples of the identity are regular::
642 sage: set_random_seed()
643 sage: J = JordanSpinEJA.random_instance()
644 sage: x = J.random_element()
645 sage: x == x.coefficient(0)*J.one() or x.degree() == 2
650 The zero and unit elements are both of degree one::
652 sage: set_random_seed()
653 sage: J = random_eja()
654 sage: J.zero().degree()
656 sage: J.one().degree()
659 Our implementation agrees with the definition::
661 sage: set_random_seed()
662 sage: x = random_eja().random_element()
663 sage: x.degree() == x.minimal_polynomial().degree()
667 if self
.is_zero() and not self
.parent().is_trivial():
668 # The minimal polynomial of zero in a nontrivial algebra
669 # is "t"; in a trivial algebra it's "1" by convention
670 # (it's an empty product).
672 return self
.subalgebra_generated_by().dimension()
675 def left_matrix(self
):
677 Our parent class defines ``left_matrix`` and ``matrix``
678 methods whose names are misleading. We don't want them.
680 raise NotImplementedError("use operator().matrix() instead")
685 def minimal_polynomial(self
):
687 Return the minimal polynomial of this element,
688 as a function of the variable `t`.
692 We restrict ourselves to the associative subalgebra
693 generated by this element, and then return the minimal
694 polynomial of this element's operator matrix (in that
695 subalgebra). This works by Baes Proposition 2.3.16.
699 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
700 ....: RealSymmetricEJA,
705 The minimal polynomial of the identity and zero elements are
708 sage: set_random_seed()
709 sage: J = random_eja()
710 sage: J.one().minimal_polynomial()
712 sage: J.zero().minimal_polynomial()
715 The degree of an element is (by one definition) the degree
716 of its minimal polynomial::
718 sage: set_random_seed()
719 sage: x = random_eja().random_element()
720 sage: x.degree() == x.minimal_polynomial().degree()
723 The minimal polynomial and the characteristic polynomial coincide
724 and are known (see Alizadeh, Example 11.11) for all elements of
725 the spin factor algebra that aren't scalar multiples of the
726 identity. We require the dimension of the algebra to be at least
727 two here so that said elements actually exist::
729 sage: set_random_seed()
730 sage: n_max = max(2, JordanSpinEJA._max_test_case_size())
731 sage: n = ZZ.random_element(2, n_max)
732 sage: J = JordanSpinEJA(n)
733 sage: y = J.random_element()
734 sage: while y == y.coefficient(0)*J.one():
735 ....: y = J.random_element()
736 sage: y0 = y.to_vector()[0]
737 sage: y_bar = y.to_vector()[1:]
738 sage: actual = y.minimal_polynomial()
739 sage: t = PolynomialRing(J.base_ring(),'t').gen(0)
740 sage: expected = t^2 - 2*y0*t + (y0^2 - norm(y_bar)^2)
741 sage: bool(actual == expected)
744 The minimal polynomial should always kill its element::
746 sage: set_random_seed()
747 sage: x = random_eja().random_element()
748 sage: p = x.minimal_polynomial()
749 sage: x.apply_univariate_polynomial(p)
752 The minimal polynomial is invariant under a change of basis,
753 and in particular, a re-scaling of the basis::
755 sage: set_random_seed()
756 sage: n_max = RealSymmetricEJA._max_test_case_size()
757 sage: n = ZZ.random_element(1, n_max)
758 sage: J1 = RealSymmetricEJA(n,QQ)
759 sage: J2 = RealSymmetricEJA(n,QQ,normalize_basis=False)
760 sage: X = random_matrix(QQ,n)
761 sage: X = X*X.transpose()
764 sage: x1.minimal_polynomial() == x2.minimal_polynomial()
769 # We would generate a zero-dimensional subalgebra
770 # where the minimal polynomial would be constant.
771 # That might be correct, but only if *this* algebra
773 if not self
.parent().is_trivial():
774 # Pretty sure we know what the minimal polynomial of
775 # the zero operator is going to be. This ensures
776 # consistency of e.g. the polynomial variable returned
777 # in the "normal" case without us having to think about it.
778 return self
.operator().minimal_polynomial()
780 A
= self
.subalgebra_generated_by()
781 return A(self
).operator().minimal_polynomial()
785 def natural_representation(self
):
787 Return a more-natural representation of this element.
789 Every finite-dimensional Euclidean Jordan Algebra is a
790 direct sum of five simple algebras, four of which comprise
791 Hermitian matrices. This method returns the original
792 "natural" representation of this element as a Hermitian
793 matrix, if it has one. If not, you get the usual representation.
797 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
798 ....: QuaternionHermitianEJA)
802 sage: J = ComplexHermitianEJA(3)
805 sage: J.one().natural_representation()
815 sage: J = QuaternionHermitianEJA(3)
818 sage: J.one().natural_representation()
819 [1 0 0 0 0 0 0 0 0 0 0 0]
820 [0 1 0 0 0 0 0 0 0 0 0 0]
821 [0 0 1 0 0 0 0 0 0 0 0 0]
822 [0 0 0 1 0 0 0 0 0 0 0 0]
823 [0 0 0 0 1 0 0 0 0 0 0 0]
824 [0 0 0 0 0 1 0 0 0 0 0 0]
825 [0 0 0 0 0 0 1 0 0 0 0 0]
826 [0 0 0 0 0 0 0 1 0 0 0 0]
827 [0 0 0 0 0 0 0 0 1 0 0 0]
828 [0 0 0 0 0 0 0 0 0 1 0 0]
829 [0 0 0 0 0 0 0 0 0 0 1 0]
830 [0 0 0 0 0 0 0 0 0 0 0 1]
833 B
= self
.parent().natural_basis()
834 W
= self
.parent().natural_basis_space()
835 return W
.linear_combination(izip(B
,self
.to_vector()))
840 The norm of this element with respect to :meth:`inner_product`.
844 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
845 ....: RealCartesianProductEJA)
849 sage: J = RealCartesianProductEJA(2)
850 sage: x = sum(J.gens())
856 sage: J = JordanSpinEJA(4)
857 sage: x = sum(J.gens())
862 return self
.inner_product(self
).sqrt()
867 Return the left-multiplication-by-this-element
868 operator on the ambient algebra.
872 sage: from mjo.eja.eja_algebra import random_eja
876 sage: set_random_seed()
877 sage: J = random_eja()
878 sage: x,y = J.random_elements(2)
879 sage: x.operator()(y) == x*y
881 sage: y.operator()(x) == x*y
886 left_mult_by_self
= lambda y
: self
*y
887 L
= P
.module_morphism(function
=left_mult_by_self
, codomain
=P
)
888 return FiniteDimensionalEuclideanJordanAlgebraOperator(
894 def quadratic_representation(self
, other
=None):
896 Return the quadratic representation of this element.
900 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
905 The explicit form in the spin factor algebra is given by
906 Alizadeh's Example 11.12::
908 sage: set_random_seed()
909 sage: x = JordanSpinEJA.random_instance().random_element()
910 sage: x_vec = x.to_vector()
911 sage: n = x_vec.degree()
913 sage: x_bar = x_vec[1:]
914 sage: A = matrix(QQ, 1, [x_vec.inner_product(x_vec)])
915 sage: B = 2*x0*x_bar.row()
916 sage: C = 2*x0*x_bar.column()
917 sage: D = matrix.identity(QQ, n-1)
918 sage: D = (x0^2 - x_bar.inner_product(x_bar))*D
919 sage: D = D + 2*x_bar.tensor_product(x_bar)
920 sage: Q = matrix.block(2,2,[A,B,C,D])
921 sage: Q == x.quadratic_representation().matrix()
924 Test all of the properties from Theorem 11.2 in Alizadeh::
926 sage: set_random_seed()
927 sage: J = random_eja()
928 sage: x,y = J.random_elements(2)
929 sage: Lx = x.operator()
930 sage: Lxx = (x*x).operator()
931 sage: Qx = x.quadratic_representation()
932 sage: Qy = y.quadratic_representation()
933 sage: Qxy = x.quadratic_representation(y)
934 sage: Qex = J.one().quadratic_representation(x)
935 sage: n = ZZ.random_element(10)
936 sage: Qxn = (x^n).quadratic_representation()
940 sage: 2*Qxy == (x+y).quadratic_representation() - Qx - Qy
943 Property 2 (multiply on the right for :trac:`28272`):
945 sage: alpha = J.base_ring().random_element()
946 sage: (alpha*x).quadratic_representation() == Qx*(alpha^2)
951 sage: not x.is_invertible() or ( Qx(x.inverse()) == x )
954 sage: not x.is_invertible() or (
957 ....: x.inverse().quadratic_representation() )
960 sage: Qxy(J.one()) == x*y
965 sage: not x.is_invertible() or (
966 ....: x.quadratic_representation(x.inverse())*Qx
967 ....: == Qx*x.quadratic_representation(x.inverse()) )
970 sage: not x.is_invertible() or (
971 ....: x.quadratic_representation(x.inverse())*Qx
973 ....: 2*Lx*Qex - Qx )
976 sage: 2*Lx*Qex - Qx == Lxx
981 sage: Qy(x).quadratic_representation() == Qy*Qx*Qy
991 sage: not x.is_invertible() or (
992 ....: Qx*x.inverse().operator() == Lx )
997 sage: not x.operator_commutes_with(y) or (
998 ....: Qx(y)^n == Qxn(y^n) )
1004 elif not other
in self
.parent():
1005 raise TypeError("'other' must live in the same algebra")
1008 M
= other
.operator()
1009 return ( L
*M
+ M
*L
- (self
*other
).operator() )
1014 def subalgebra_generated_by(self
, orthonormalize_basis
=False):
1016 Return the associative subalgebra of the parent EJA generated
1021 sage: from mjo.eja.eja_algebra import random_eja
1025 This subalgebra, being composed of only powers, is associative::
1027 sage: set_random_seed()
1028 sage: x0 = random_eja().random_element()
1029 sage: A = x0.subalgebra_generated_by()
1030 sage: x,y,z = A.random_elements(3)
1031 sage: (x*y)*z == x*(y*z)
1034 Squaring in the subalgebra should work the same as in
1037 sage: set_random_seed()
1038 sage: x = random_eja().random_element()
1039 sage: A = x.subalgebra_generated_by()
1040 sage: A(x^2) == A(x)*A(x)
1043 The subalgebra generated by the zero element is trivial::
1045 sage: set_random_seed()
1046 sage: A = random_eja().zero().subalgebra_generated_by()
1048 Euclidean Jordan algebra of dimension 0 over...
1053 return FiniteDimensionalEuclideanJordanElementSubalgebra(self
, orthonormalize_basis
)
1056 def subalgebra_idempotent(self
):
1058 Find an idempotent in the associative subalgebra I generate
1059 using Proposition 2.3.5 in Baes.
1063 sage: from mjo.eja.eja_algebra import random_eja
1067 sage: set_random_seed()
1068 sage: J = random_eja()
1069 sage: x = J.random_element()
1070 sage: while x.is_nilpotent():
1071 ....: x = J.random_element()
1072 sage: c = x.subalgebra_idempotent()
1077 if self
.is_nilpotent():
1078 raise ValueError("this only works with non-nilpotent elements!")
1080 J
= self
.subalgebra_generated_by()
1083 # The image of the matrix of left-u^m-multiplication
1084 # will be minimal for some natural number s...
1086 minimal_dim
= J
.dimension()
1087 for i
in xrange(1, minimal_dim
):
1088 this_dim
= (u
**i
).operator().matrix().image().dimension()
1089 if this_dim
< minimal_dim
:
1090 minimal_dim
= this_dim
1093 # Now minimal_matrix should correspond to the smallest
1094 # non-zero subspace in Baes's (or really, Koecher's)
1097 # However, we need to restrict the matrix to work on the
1098 # subspace... or do we? Can't we just solve, knowing that
1099 # A(c) = u^(s+1) should have a solution in the big space,
1102 # Beware, solve_right() means that we're using COLUMN vectors.
1103 # Our FiniteDimensionalAlgebraElement superclass uses rows.
1105 A
= u_next
.operator().matrix()
1106 c
= J
.from_vector(A
.solve_right(u_next
.to_vector()))
1108 # Now c is the idempotent we want, but it still lives in the subalgebra.
1109 return c
.superalgebra_element()
1114 Return my trace, the sum of my eigenvalues.
1118 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
1119 ....: RealCartesianProductEJA,
1124 sage: J = JordanSpinEJA(3)
1125 sage: x = sum(J.gens())
1131 sage: J = RealCartesianProductEJA(5)
1132 sage: J.one().trace()
1137 The trace of an element is a real number::
1139 sage: set_random_seed()
1140 sage: J = random_eja()
1141 sage: J.random_element().trace() in RLF
1147 p
= P
._charpoly
_coeff
(r
-1)
1148 # The _charpoly_coeff function already adds the factor of
1149 # -1 to ensure that _charpoly_coeff(r-1) is really what
1150 # appears in front of t^{r-1} in the charpoly. However,
1151 # we want the negative of THAT for the trace.
1152 return -p(*self
.to_vector())
1155 def trace_inner_product(self
, other
):
1157 Return the trace inner product of myself and ``other``.
1161 sage: from mjo.eja.eja_algebra import random_eja
1165 The trace inner product is commutative, bilinear, and associative::
1167 sage: set_random_seed()
1168 sage: J = random_eja()
1169 sage: x,y,z = J.random_elements(3)
1171 sage: x.trace_inner_product(y) == y.trace_inner_product(x)
1174 sage: a = J.base_ring().random_element();
1175 sage: actual = (a*(x+z)).trace_inner_product(y)
1176 sage: expected = ( a*x.trace_inner_product(y) +
1177 ....: a*z.trace_inner_product(y) )
1178 sage: actual == expected
1180 sage: actual = x.trace_inner_product(a*(y+z))
1181 sage: expected = ( a*x.trace_inner_product(y) +
1182 ....: a*x.trace_inner_product(z) )
1183 sage: actual == expected
1186 sage: (x*y).trace_inner_product(z) == y.trace_inner_product(x*z)
1190 if not other
in self
.parent():
1191 raise TypeError("'other' must live in the same algebra")
1193 return (self
*other
).trace()
1196 def trace_norm(self
):
1198 The norm of this element with respect to :meth:`trace_inner_product`.
1202 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
1203 ....: RealCartesianProductEJA)
1207 sage: J = RealCartesianProductEJA(2)
1208 sage: x = sum(J.gens())
1209 sage: x.trace_norm()
1214 sage: J = JordanSpinEJA(4)
1215 sage: x = sum(J.gens())
1216 sage: x.trace_norm()
1220 return self
.trace_inner_product(self
).sqrt()