2 Euclidean Jordan Algebras. These are formally-real Jordan Algebras;
3 specifically those where u^2 + v^2 = 0 implies that u = v = 0. They
4 are used in optimization, and have some additional nice methods beyond
5 what can be supported in a general Jordan Algebra.
10 sage: from mjo.eja.eja_algebra import random_eja
15 Euclidean Jordan algebra of dimension...
19 from itertools
import repeat
21 from sage
.algebras
.quatalg
.quaternion_algebra
import QuaternionAlgebra
22 from sage
.categories
.magmatic_algebras
import MagmaticAlgebras
23 from sage
.combinat
.free_module
import CombinatorialFreeModule
24 from sage
.matrix
.constructor
import matrix
25 from sage
.matrix
.matrix_space
import MatrixSpace
26 from sage
.misc
.cachefunc
import cached_method
27 from sage
.misc
.table
import table
28 from sage
.modules
.free_module
import FreeModule
, VectorSpace
29 from sage
.rings
.all
import (ZZ
, QQ
, AA
, QQbar
, RR
, RLF
, CLF
,
32 from mjo
.eja
.eja_element
import FiniteDimensionalEuclideanJordanAlgebraElement
33 from mjo
.eja
.eja_operator
import FiniteDimensionalEuclideanJordanAlgebraOperator
34 from mjo
.eja
.eja_utils
import _mat2vec
36 class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule
):
38 The lowest-level class for representing a Euclidean Jordan algebra.
40 def _coerce_map_from_base_ring(self
):
42 Disable the map from the base ring into the algebra.
44 Performing a nonsense conversion like this automatically
45 is counterpedagogical. The fallback is to try the usual
46 element constructor, which should also fail.
50 sage: from mjo.eja.eja_algebra import random_eja
54 sage: set_random_seed()
55 sage: J = random_eja()
57 Traceback (most recent call last):
59 ValueError: not an element of this algebra
76 * field -- the scalar field for this algebra (must be real)
78 * multiplication_table -- the multiplication table for this
79 algebra's implicit basis. Only the lower-triangular portion
80 of the table is used, since the multiplication is assumed
85 sage: from mjo.eja.eja_algebra import (
86 ....: FiniteDimensionalEuclideanJordanAlgebra,
92 By definition, Jordan multiplication commutes::
94 sage: set_random_seed()
95 sage: J = random_eja()
96 sage: x,y = J.random_elements(2)
100 An error is raised if the Jordan product is not commutative::
102 sage: JP = ((1,2),(0,0))
103 sage: IP = ((1,0),(0,1))
104 sage: FiniteDimensionalEuclideanJordanAlgebra(QQ,JP,IP)
105 Traceback (most recent call last):
107 ValueError: Jordan product is not commutative
109 An error is raised if the inner-product is not commutative::
111 sage: JP = ((1,0),(0,1))
112 sage: IP = ((1,2),(0,0))
113 sage: FiniteDimensionalEuclideanJordanAlgebra(QQ,JP,IP)
114 Traceback (most recent call last):
116 ValueError: inner-product is not commutative
120 The ``field`` we're given must be real with ``check_field=True``::
122 sage: JordanSpinEJA(2,QQbar)
123 Traceback (most recent call last):
125 ValueError: scalar field is not real
127 The multiplication table must be square with ``check_axioms=True``::
129 sage: FiniteDimensionalEuclideanJordanAlgebra(QQ,((),()),((1,),))
130 Traceback (most recent call last):
132 ValueError: multiplication table is not square
134 The multiplication and inner-product tables must be the same
135 size (and in particular, the inner-product table must also be
136 square) with ``check_axioms=True``::
138 sage: FiniteDimensionalEuclideanJordanAlgebra(QQ,((1,),),(()))
139 Traceback (most recent call last):
141 ValueError: multiplication and inner-product tables are
143 sage: FiniteDimensionalEuclideanJordanAlgebra(QQ,((1,),),((1,2),))
144 Traceback (most recent call last):
146 ValueError: multiplication and inner-product tables are
151 if not field
.is_subring(RR
):
152 # Note: this does return true for the real algebraic
153 # field, the rationals, and any quadratic field where
154 # we've specified a real embedding.
155 raise ValueError("scalar field is not real")
158 # The multiplication and inner-product tables should be square
159 # if the user wants us to verify them. And we verify them as
160 # soon as possible, because we want to exploit their symmetry.
161 n
= len(multiplication_table
)
163 if not all( len(l
) == n
for l
in multiplication_table
):
164 raise ValueError("multiplication table is not square")
166 # If the multiplication table is square, we can check if
167 # the inner-product table is square by comparing it to the
168 # multiplication table's dimensions.
169 msg
= "multiplication and inner-product tables are different sizes"
170 if not len(inner_product_table
) == n
:
171 raise ValueError(msg
)
173 if not all( len(l
) == n
for l
in inner_product_table
):
174 raise ValueError(msg
)
176 # Check commutativity of the Jordan product (symmetry of
177 # the multiplication table) and the commutativity of the
178 # inner-product (symmetry of the inner-product table)
179 # first if we're going to check them at all.. This has to
180 # be done before we define product_on_basis(), because
181 # that method assumes that self._multiplication_table is
182 # symmetric. And it has to be done before we build
183 # self._inner_product_matrix, because the process used to
184 # construct it assumes symmetry as well.
185 if not all( multiplication_table
[j
][i
]
186 == multiplication_table
[i
][j
]
188 for j
in range(i
+1) ):
189 raise ValueError("Jordan product is not commutative")
191 if not all( inner_product_table
[j
][i
]
192 == inner_product_table
[i
][j
]
194 for j
in range(i
+1) ):
195 raise ValueError("inner-product is not commutative")
197 self
._matrix
_basis
= matrix_basis
200 category
= MagmaticAlgebras(field
).FiniteDimensional()
201 category
= category
.WithBasis().Unital()
203 fda
= super(FiniteDimensionalEuclideanJordanAlgebra
, self
)
208 self
.print_options(bracket
='')
210 # The multiplication table we're given is necessarily in terms
211 # of vectors, because we don't have an algebra yet for
212 # anything to be an element of. However, it's faster in the
213 # long run to have the multiplication table be in terms of
214 # algebra elements. We do this after calling the superclass
215 # constructor so that from_vector() knows what to do.
217 # Note: we take advantage of symmetry here, and only store
218 # the lower-triangular portion of the table.
219 self
._multiplication
_table
= [ [ self
.vector_space().zero()
220 for j
in range(i
+1) ]
225 elt
= self
.from_vector(multiplication_table
[i
][j
])
226 self
._multiplication
_table
[i
][j
] = elt
228 self
._multiplication
_table
= tuple(map(tuple, self
._multiplication
_table
))
230 # Save our inner product as a matrix, since the efficiency of
231 # matrix multiplication will usually outweigh the fact that we
232 # have to store a redundant upper- or lower-triangular part.
233 # Pre-cache the fact that these are Hermitian (real symmetric,
234 # in fact) in case some e.g. matrix multiplication routine can
235 # take advantage of it.
236 ip_matrix_constructor
= lambda i
,j
: inner_product_table
[i
][j
] if j
<= i
else inner_product_table
[j
][i
]
237 self
._inner
_product
_matrix
= matrix(field
, n
, ip_matrix_constructor
)
238 self
._inner
_product
_matrix
._cache
= {'hermitian': True}
239 self
._inner
_product
_matrix
.set_immutable()
242 if not self
._is
_jordanian
():
243 raise ValueError("Jordan identity does not hold")
244 if not self
._inner
_product
_is
_associative
():
245 raise ValueError("inner product is not associative")
247 def _element_constructor_(self
, elt
):
249 Construct an element of this algebra from its vector or matrix
252 This gets called only after the parent element _call_ method
253 fails to find a coercion for the argument.
257 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
259 ....: RealSymmetricEJA)
263 The identity in `S^n` is converted to the identity in the EJA::
265 sage: J = RealSymmetricEJA(3)
266 sage: I = matrix.identity(QQ,3)
267 sage: J(I) == J.one()
270 This skew-symmetric matrix can't be represented in the EJA::
272 sage: J = RealSymmetricEJA(3)
273 sage: A = matrix(QQ,3, lambda i,j: i-j)
275 Traceback (most recent call last):
277 ValueError: not an element of this algebra
281 Ensure that we can convert any element of the two non-matrix
282 simple algebras (whose matrix representations are columns)
283 back and forth faithfully::
285 sage: set_random_seed()
286 sage: J = HadamardEJA.random_instance()
287 sage: x = J.random_element()
288 sage: J(x.to_vector().column()) == x
290 sage: J = JordanSpinEJA.random_instance()
291 sage: x = J.random_element()
292 sage: J(x.to_vector().column()) == x
295 msg
= "not an element of this algebra"
297 # The superclass implementation of random_element()
298 # needs to be able to coerce "0" into the algebra.
300 elif elt
in self
.base_ring():
301 # Ensure that no base ring -> algebra coercion is performed
302 # by this method. There's some stupidity in sage that would
303 # otherwise propagate to this method; for example, sage thinks
304 # that the integer 3 belongs to the space of 2-by-2 matrices.
305 raise ValueError(msg
)
307 if elt
not in self
.matrix_space():
308 raise ValueError(msg
)
310 # Thanks for nothing! Matrix spaces aren't vector spaces in
311 # Sage, so we have to figure out its matrix-basis coordinates
312 # ourselves. We use the basis space's ring instead of the
313 # element's ring because the basis space might be an algebraic
314 # closure whereas the base ring of the 3-by-3 identity matrix
315 # could be QQ instead of QQbar.
316 V
= VectorSpace(self
.base_ring(), elt
.nrows()*elt
.ncols())
317 W
= V
.span_of_basis( _mat2vec(s
) for s
in self
.matrix_basis() )
320 coords
= W
.coordinate_vector(_mat2vec(elt
))
321 except ArithmeticError: # vector is not in free module
322 raise ValueError(msg
)
324 return self
.from_vector(coords
)
328 Return a string representation of ``self``.
332 sage: from mjo.eja.eja_algebra import JordanSpinEJA
336 Ensure that it says what we think it says::
338 sage: JordanSpinEJA(2, field=AA)
339 Euclidean Jordan algebra of dimension 2 over Algebraic Real Field
340 sage: JordanSpinEJA(3, field=RDF)
341 Euclidean Jordan algebra of dimension 3 over Real Double Field
344 fmt
= "Euclidean Jordan algebra of dimension {} over {}"
345 return fmt
.format(self
.dimension(), self
.base_ring())
347 def product_on_basis(self
, i
, j
):
348 # We only stored the lower-triangular portion of the
349 # multiplication table.
351 return self
._multiplication
_table
[i
][j
]
353 return self
._multiplication
_table
[j
][i
]
355 def _is_commutative(self
):
357 Whether or not this algebra's multiplication table is commutative.
359 This method should of course always return ``True``, unless
360 this algebra was constructed with ``check_axioms=False`` and
361 passed an invalid multiplication table.
363 return all( self
.product_on_basis(i
,j
) == self
.product_on_basis(i
,j
)
364 for i
in range(self
.dimension())
365 for j
in range(self
.dimension()) )
367 def _is_jordanian(self
):
369 Whether or not this algebra's multiplication table respects the
370 Jordan identity `(x^{2})(xy) = x(x^{2}y)`.
372 We only check one arrangement of `x` and `y`, so for a
373 ``True`` result to be truly true, you should also check
374 :meth:`_is_commutative`. This method should of course always
375 return ``True``, unless this algebra was constructed with
376 ``check_axioms=False`` and passed an invalid multiplication table.
378 return all( (self
.monomial(i
)**2)*(self
.monomial(i
)*self
.monomial(j
))
380 (self
.monomial(i
))*((self
.monomial(i
)**2)*self
.monomial(j
))
381 for i
in range(self
.dimension())
382 for j
in range(self
.dimension()) )
384 def _inner_product_is_associative(self
):
386 Return whether or not this algebra's inner product `B` is
387 associative; that is, whether or not `B(xy,z) = B(x,yz)`.
389 This method should of course always return ``True``, unless
390 this algebra was constructed with ``check_axioms=False`` and
391 passed an invalid multiplication table.
394 # Used to check whether or not something is zero in an inexact
395 # ring. This number is sufficient to allow the construction of
396 # QuaternionHermitianEJA(2, RDF) with check_axioms=True.
399 for i
in range(self
.dimension()):
400 for j
in range(self
.dimension()):
401 for k
in range(self
.dimension()):
405 diff
= (x
*y
).inner_product(z
) - x
.inner_product(y
*z
)
407 if self
.base_ring().is_exact():
411 if diff
.abs() > epsilon
:
417 def characteristic_polynomial_of(self
):
419 Return the algebra's "characteristic polynomial of" function,
420 which is itself a multivariate polynomial that, when evaluated
421 at the coordinates of some algebra element, returns that
422 element's characteristic polynomial.
424 The resulting polynomial has `n+1` variables, where `n` is the
425 dimension of this algebra. The first `n` variables correspond to
426 the coordinates of an algebra element: when evaluated at the
427 coordinates of an algebra element with respect to a certain
428 basis, the result is a univariate polynomial (in the one
429 remaining variable ``t``), namely the characteristic polynomial
434 sage: from mjo.eja.eja_algebra import JordanSpinEJA, TrivialEJA
438 The characteristic polynomial in the spin algebra is given in
439 Alizadeh, Example 11.11::
441 sage: J = JordanSpinEJA(3)
442 sage: p = J.characteristic_polynomial_of(); p
443 X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2
444 sage: xvec = J.one().to_vector()
448 By definition, the characteristic polynomial is a monic
449 degree-zero polynomial in a rank-zero algebra. Note that
450 Cayley-Hamilton is indeed satisfied since the polynomial
451 ``1`` evaluates to the identity element of the algebra on
454 sage: J = TrivialEJA()
455 sage: J.characteristic_polynomial_of()
462 # The list of coefficient polynomials a_0, a_1, a_2, ..., a_(r-1).
463 a
= self
._charpoly
_coefficients
()
465 # We go to a bit of trouble here to reorder the
466 # indeterminates, so that it's easier to evaluate the
467 # characteristic polynomial at x's coordinates and get back
468 # something in terms of t, which is what we want.
469 S
= PolynomialRing(self
.base_ring(),'t')
473 S
= PolynomialRing(S
, R
.variable_names())
476 return (t
**r
+ sum( a
[k
]*(t
**k
) for k
in range(r
) ))
478 def coordinate_polynomial_ring(self
):
480 The multivariate polynomial ring in which this algebra's
481 :meth:`characteristic_polynomial_of` lives.
485 sage: from mjo.eja.eja_algebra import (HadamardEJA,
486 ....: RealSymmetricEJA)
490 sage: J = HadamardEJA(2)
491 sage: J.coordinate_polynomial_ring()
492 Multivariate Polynomial Ring in X1, X2...
493 sage: J = RealSymmetricEJA(3,QQ,orthonormalize=False)
494 sage: J.coordinate_polynomial_ring()
495 Multivariate Polynomial Ring in X1, X2, X3, X4, X5, X6...
498 var_names
= tuple( "X%d" % z
for z
in range(1, self
.dimension()+1) )
499 return PolynomialRing(self
.base_ring(), var_names
)
501 def inner_product(self
, x
, y
):
503 The inner product associated with this Euclidean Jordan algebra.
505 Defaults to the trace inner product, but can be overridden by
506 subclasses if they are sure that the necessary properties are
511 sage: from mjo.eja.eja_algebra import (random_eja,
513 ....: BilinearFormEJA)
517 Our inner product is "associative," which means the following for
518 a symmetric bilinear form::
520 sage: set_random_seed()
521 sage: J = random_eja()
522 sage: x,y,z = J.random_elements(3)
523 sage: (x*y).inner_product(z) == y.inner_product(x*z)
528 Ensure that this is the usual inner product for the algebras
531 sage: set_random_seed()
532 sage: J = HadamardEJA.random_instance()
533 sage: x,y = J.random_elements(2)
534 sage: actual = x.inner_product(y)
535 sage: expected = x.to_vector().inner_product(y.to_vector())
536 sage: actual == expected
539 Ensure that this is one-half of the trace inner-product in a
540 BilinearFormEJA that isn't just the reals (when ``n`` isn't
541 one). This is in Faraut and Koranyi, and also my "On the
544 sage: set_random_seed()
545 sage: J = BilinearFormEJA.random_instance()
546 sage: n = J.dimension()
547 sage: x = J.random_element()
548 sage: y = J.random_element()
549 sage: (n == 1) or (x.inner_product(y) == (x*y).trace()/2)
552 B
= self
._inner
_product
_matrix
553 return (B
*x
.to_vector()).inner_product(y
.to_vector())
556 def is_trivial(self
):
558 Return whether or not this algebra is trivial.
560 A trivial algebra contains only the zero element.
564 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
569 sage: J = ComplexHermitianEJA(3)
575 sage: J = TrivialEJA()
580 return self
.dimension() == 0
583 def multiplication_table(self
):
585 Return a visual representation of this algebra's multiplication
586 table (on basis elements).
590 sage: from mjo.eja.eja_algebra import JordanSpinEJA
594 sage: J = JordanSpinEJA(4)
595 sage: J.multiplication_table()
596 +----++----+----+----+----+
597 | * || e0 | e1 | e2 | e3 |
598 +====++====+====+====+====+
599 | e0 || e0 | e1 | e2 | e3 |
600 +----++----+----+----+----+
601 | e1 || e1 | e0 | 0 | 0 |
602 +----++----+----+----+----+
603 | e2 || e2 | 0 | e0 | 0 |
604 +----++----+----+----+----+
605 | e3 || e3 | 0 | 0 | e0 |
606 +----++----+----+----+----+
610 M
= [ [ self
.zero() for j
in range(n
) ]
614 M
[i
][j
] = self
._multiplication
_table
[i
][j
]
618 # Prepend the left "header" column entry Can't do this in
619 # the loop because it messes up the symmetry.
620 M
[i
] = [self
.monomial(i
)] + M
[i
]
622 # Prepend the header row.
623 M
= [["*"] + list(self
.gens())] + M
624 return table(M
, header_row
=True, header_column
=True, frame
=True)
627 def matrix_basis(self
):
629 Return an (often more natural) representation of this algebras
630 basis as an ordered tuple of matrices.
632 Every finite-dimensional Euclidean Jordan Algebra is a, up to
633 Jordan isomorphism, a direct sum of five simple
634 algebras---four of which comprise Hermitian matrices. And the
635 last type of algebra can of course be thought of as `n`-by-`1`
636 column matrices (ambiguusly called column vectors) to avoid
637 special cases. As a result, matrices (and column vectors) are
638 a natural representation format for Euclidean Jordan algebra
641 But, when we construct an algebra from a basis of matrices,
642 those matrix representations are lost in favor of coordinate
643 vectors *with respect to* that basis. We could eventually
644 convert back if we tried hard enough, but having the original
645 representations handy is valuable enough that we simply store
646 them and return them from this method.
648 Why implement this for non-matrix algebras? Avoiding special
649 cases for the :class:`BilinearFormEJA` pays with simplicity in
650 its own right. But mainly, we would like to be able to assume
651 that elements of a :class:`DirectSumEJA` can be displayed
652 nicely, without having to have special classes for direct sums
653 one of whose components was a matrix algebra.
657 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
658 ....: RealSymmetricEJA)
662 sage: J = RealSymmetricEJA(2)
664 Finite family {0: e0, 1: e1, 2: e2}
665 sage: J.matrix_basis()
667 [1 0] [ 0 0.7071067811865475?] [0 0]
668 [0 0], [0.7071067811865475? 0], [0 1]
673 sage: J = JordanSpinEJA(2)
675 Finite family {0: e0, 1: e1}
676 sage: J.matrix_basis()
682 if self
._matrix
_basis
is None:
683 M
= self
.matrix_space()
684 return tuple( M(b
.to_vector()) for b
in self
.basis() )
686 return self
._matrix
_basis
689 def matrix_space(self
):
691 Return the matrix space in which this algebra's elements live, if
692 we think of them as matrices (including column vectors of the
695 Generally this will be an `n`-by-`1` column-vector space,
696 except when the algebra is trivial. There it's `n`-by-`n`
697 (where `n` is zero), to ensure that two elements of the matrix
698 space (empty matrices) can be multiplied.
700 Matrix algebras override this with something more useful.
702 if self
.is_trivial():
703 return MatrixSpace(self
.base_ring(), 0)
704 elif self
._matrix
_basis
is None or len(self
._matrix
_basis
) == 0:
705 return MatrixSpace(self
.base_ring(), self
.dimension(), 1)
707 return self
._matrix
_basis
[0].matrix_space()
713 Return the unit element of this algebra.
717 sage: from mjo.eja.eja_algebra import (HadamardEJA,
722 sage: J = HadamardEJA(5)
724 e0 + e1 + e2 + e3 + e4
728 The identity element acts like the identity::
730 sage: set_random_seed()
731 sage: J = random_eja()
732 sage: x = J.random_element()
733 sage: J.one()*x == x and x*J.one() == x
736 The matrix of the unit element's operator is the identity::
738 sage: set_random_seed()
739 sage: J = random_eja()
740 sage: actual = J.one().operator().matrix()
741 sage: expected = matrix.identity(J.base_ring(), J.dimension())
742 sage: actual == expected
745 Ensure that the cached unit element (often precomputed by
746 hand) agrees with the computed one::
748 sage: set_random_seed()
749 sage: J = random_eja()
750 sage: cached = J.one()
751 sage: J.one.clear_cache()
752 sage: J.one() == cached
756 # We can brute-force compute the matrices of the operators
757 # that correspond to the basis elements of this algebra.
758 # If some linear combination of those basis elements is the
759 # algebra identity, then the same linear combination of
760 # their matrices has to be the identity matrix.
762 # Of course, matrices aren't vectors in sage, so we have to
763 # appeal to the "long vectors" isometry.
764 oper_vecs
= [ _mat2vec(g
.operator().matrix()) for g
in self
.gens() ]
766 # Now we use basic linear algebra to find the coefficients,
767 # of the matrices-as-vectors-linear-combination, which should
768 # work for the original algebra basis too.
769 A
= matrix(self
.base_ring(), oper_vecs
)
771 # We used the isometry on the left-hand side already, but we
772 # still need to do it for the right-hand side. Recall that we
773 # wanted something that summed to the identity matrix.
774 b
= _mat2vec( matrix
.identity(self
.base_ring(), self
.dimension()) )
776 # Now if there's an identity element in the algebra, this
777 # should work. We solve on the left to avoid having to
778 # transpose the matrix "A".
779 return self
.from_vector(A
.solve_left(b
))
782 def peirce_decomposition(self
, c
):
784 The Peirce decomposition of this algebra relative to the
787 In the future, this can be extended to a complete system of
788 orthogonal idempotents.
792 - ``c`` -- an idempotent of this algebra.
796 A triple (J0, J5, J1) containing two subalgebras and one subspace
799 - ``J0`` -- the algebra on the eigenspace of ``c.operator()``
800 corresponding to the eigenvalue zero.
802 - ``J5`` -- the eigenspace (NOT a subalgebra) of ``c.operator()``
803 corresponding to the eigenvalue one-half.
805 - ``J1`` -- the algebra on the eigenspace of ``c.operator()``
806 corresponding to the eigenvalue one.
808 These are the only possible eigenspaces for that operator, and this
809 algebra is a direct sum of them. The spaces ``J0`` and ``J1`` are
810 orthogonal, and are subalgebras of this algebra with the appropriate
815 sage: from mjo.eja.eja_algebra import random_eja, RealSymmetricEJA
819 The canonical example comes from the symmetric matrices, which
820 decompose into diagonal and off-diagonal parts::
822 sage: J = RealSymmetricEJA(3)
823 sage: C = matrix(QQ, [ [1,0,0],
827 sage: J0,J5,J1 = J.peirce_decomposition(c)
829 Euclidean Jordan algebra of dimension 1...
831 Vector space of degree 6 and dimension 2...
833 Euclidean Jordan algebra of dimension 3...
834 sage: J0.one().to_matrix()
838 sage: orig_df = AA.options.display_format
839 sage: AA.options.display_format = 'radical'
840 sage: J.from_vector(J5.basis()[0]).to_matrix()
844 sage: J.from_vector(J5.basis()[1]).to_matrix()
848 sage: AA.options.display_format = orig_df
849 sage: J1.one().to_matrix()
856 Every algebra decomposes trivially with respect to its identity
859 sage: set_random_seed()
860 sage: J = random_eja()
861 sage: J0,J5,J1 = J.peirce_decomposition(J.one())
862 sage: J0.dimension() == 0 and J5.dimension() == 0
864 sage: J1.superalgebra() == J and J1.dimension() == J.dimension()
867 The decomposition is into eigenspaces, and its components are
868 therefore necessarily orthogonal. Moreover, the identity
869 elements in the two subalgebras are the projections onto their
870 respective subspaces of the superalgebra's identity element::
872 sage: set_random_seed()
873 sage: J = random_eja()
874 sage: x = J.random_element()
875 sage: if not J.is_trivial():
876 ....: while x.is_nilpotent():
877 ....: x = J.random_element()
878 sage: c = x.subalgebra_idempotent()
879 sage: J0,J5,J1 = J.peirce_decomposition(c)
881 sage: for (w,y,z) in zip(J0.basis(), J5.basis(), J1.basis()):
882 ....: w = w.superalgebra_element()
883 ....: y = J.from_vector(y)
884 ....: z = z.superalgebra_element()
885 ....: ipsum += w.inner_product(y).abs()
886 ....: ipsum += w.inner_product(z).abs()
887 ....: ipsum += y.inner_product(z).abs()
890 sage: J1(c) == J1.one()
892 sage: J0(J.one() - c) == J0.one()
896 if not c
.is_idempotent():
897 raise ValueError("element is not idempotent: %s" % c
)
899 from mjo
.eja
.eja_subalgebra
import FiniteDimensionalEuclideanJordanSubalgebra
901 # Default these to what they should be if they turn out to be
902 # trivial, because eigenspaces_left() won't return eigenvalues
903 # corresponding to trivial spaces (e.g. it returns only the
904 # eigenspace corresponding to lambda=1 if you take the
905 # decomposition relative to the identity element).
906 trivial
= FiniteDimensionalEuclideanJordanSubalgebra(self
, ())
907 J0
= trivial
# eigenvalue zero
908 J5
= VectorSpace(self
.base_ring(), 0) # eigenvalue one-half
909 J1
= trivial
# eigenvalue one
911 for (eigval
, eigspace
) in c
.operator().matrix().right_eigenspaces():
912 if eigval
== ~
(self
.base_ring()(2)):
915 gens
= tuple( self
.from_vector(b
) for b
in eigspace
.basis() )
916 subalg
= FiniteDimensionalEuclideanJordanSubalgebra(self
,
924 raise ValueError("unexpected eigenvalue: %s" % eigval
)
929 def random_element(self
, thorough
=False):
931 Return a random element of this algebra.
933 Our algebra superclass method only returns a linear
934 combination of at most two basis elements. We instead
935 want the vector space "random element" method that
936 returns a more diverse selection.
940 - ``thorough`` -- (boolean; default False) whether or not we
941 should generate irrational coefficients for the random
942 element when our base ring is irrational; this slows the
943 algebra operations to a crawl, but any truly random method
947 # For a general base ring... maybe we can trust this to do the
948 # right thing? Unlikely, but.
949 V
= self
.vector_space()
950 v
= V
.random_element()
952 if self
.base_ring() is AA
:
953 # The "random element" method of the algebraic reals is
954 # stupid at the moment, and only returns integers between
955 # -2 and 2, inclusive:
957 # https://trac.sagemath.org/ticket/30875
959 # Instead, we implement our own "random vector" method,
960 # and then coerce that into the algebra. We use the vector
961 # space degree here instead of the dimension because a
962 # subalgebra could (for example) be spanned by only two
963 # vectors, each with five coordinates. We need to
964 # generate all five coordinates.
966 v
*= QQbar
.random_element().real()
968 v
*= QQ
.random_element()
970 return self
.from_vector(V
.coordinate_vector(v
))
972 def random_elements(self
, count
, thorough
=False):
974 Return ``count`` random elements as a tuple.
978 - ``thorough`` -- (boolean; default False) whether or not we
979 should generate irrational coefficients for the random
980 elements when our base ring is irrational; this slows the
981 algebra operations to a crawl, but any truly random method
986 sage: from mjo.eja.eja_algebra import JordanSpinEJA
990 sage: J = JordanSpinEJA(3)
991 sage: x,y,z = J.random_elements(3)
992 sage: all( [ x in J, y in J, z in J ])
994 sage: len( J.random_elements(10) ) == 10
998 return tuple( self
.random_element(thorough
)
999 for idx
in range(count
) )
1003 def _charpoly_coefficients(self
):
1005 The `r` polynomial coefficients of the "characteristic polynomial
1008 n
= self
.dimension()
1009 R
= self
.coordinate_polynomial_ring()
1011 F
= R
.fraction_field()
1014 # From a result in my book, these are the entries of the
1015 # basis representation of L_x.
1016 return sum( vars[k
]*self
.monomial(k
).operator().matrix()[i
,j
]
1019 L_x
= matrix(F
, n
, n
, L_x_i_j
)
1022 if self
.rank
.is_in_cache():
1024 # There's no need to pad the system with redundant
1025 # columns if we *know* they'll be redundant.
1028 # Compute an extra power in case the rank is equal to
1029 # the dimension (otherwise, we would stop at x^(r-1)).
1030 x_powers
= [ (L_x
**k
)*self
.one().to_vector()
1031 for k
in range(n
+1) ]
1032 A
= matrix
.column(F
, x_powers
[:n
])
1033 AE
= A
.extended_echelon_form()
1040 # The theory says that only the first "r" coefficients are
1041 # nonzero, and they actually live in the original polynomial
1042 # ring and not the fraction field. We negate them because
1043 # in the actual characteristic polynomial, they get moved
1044 # to the other side where x^r lives.
1045 return -A_rref
.solve_right(E
*b
).change_ring(R
)[:r
]
1050 Return the rank of this EJA.
1052 This is a cached method because we know the rank a priori for
1053 all of the algebras we can construct. Thus we can avoid the
1054 expensive ``_charpoly_coefficients()`` call unless we truly
1055 need to compute the whole characteristic polynomial.
1059 sage: from mjo.eja.eja_algebra import (HadamardEJA,
1060 ....: JordanSpinEJA,
1061 ....: RealSymmetricEJA,
1062 ....: ComplexHermitianEJA,
1063 ....: QuaternionHermitianEJA,
1068 The rank of the Jordan spin algebra is always two::
1070 sage: JordanSpinEJA(2).rank()
1072 sage: JordanSpinEJA(3).rank()
1074 sage: JordanSpinEJA(4).rank()
1077 The rank of the `n`-by-`n` Hermitian real, complex, or
1078 quaternion matrices is `n`::
1080 sage: RealSymmetricEJA(4).rank()
1082 sage: ComplexHermitianEJA(3).rank()
1084 sage: QuaternionHermitianEJA(2).rank()
1089 Ensure that every EJA that we know how to construct has a
1090 positive integer rank, unless the algebra is trivial in
1091 which case its rank will be zero::
1093 sage: set_random_seed()
1094 sage: J = random_eja()
1098 sage: r > 0 or (r == 0 and J.is_trivial())
1101 Ensure that computing the rank actually works, since the ranks
1102 of all simple algebras are known and will be cached by default::
1104 sage: set_random_seed() # long time
1105 sage: J = random_eja() # long time
1106 sage: caches = J.rank() # long time
1107 sage: J.rank.clear_cache() # long time
1108 sage: J.rank() == cached # long time
1112 return len(self
._charpoly
_coefficients
())
1115 def vector_space(self
):
1117 Return the vector space that underlies this algebra.
1121 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1125 sage: J = RealSymmetricEJA(2)
1126 sage: J.vector_space()
1127 Vector space of dimension 3 over...
1130 return self
.zero().to_vector().parent().ambient_vector_space()
1133 Element
= FiniteDimensionalEuclideanJordanAlgebraElement
1135 class RationalBasisEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra
):
1137 New class for algebras whose supplied basis elements have all rational entries.
1141 sage: from mjo.eja.eja_algebra import BilinearFormEJA
1145 The supplied basis is orthonormalized by default::
1147 sage: B = matrix(QQ, [[1, 0, 0], [0, 25, -32], [0, -32, 41]])
1148 sage: J = BilinearFormEJA(B)
1149 sage: J.matrix_basis()
1162 orthonormalize
=True,
1169 vector_basis
= basis
1171 from sage
.structure
.element
import is_Matrix
1172 basis_is_matrices
= False
1176 if is_Matrix(basis
[0]):
1177 basis_is_matrices
= True
1178 from mjo
.eja
.eja_utils
import _vec2mat
1179 vector_basis
= tuple( map(_mat2vec
,basis
) )
1180 degree
= basis
[0].nrows()**2
1182 degree
= basis
[0].degree()
1184 V
= VectorSpace(field
, degree
)
1186 # If we were asked to orthonormalize, and if the orthonormal
1187 # basis is different from the given one, then we also want to
1188 # compute multiplication and inner-product tables for the
1189 # deorthonormalized basis. These can be used later to
1190 # construct a deorthonormalized copy of this algebra over QQ
1191 # in which several operations are much faster.
1192 self
._rational
_algebra
= None
1195 if self
.base_ring() is not QQ
:
1196 # There's no point in constructing the extra algebra if this
1197 # one is already rational. If the original basis is rational
1198 # but normalization would make it irrational, then this whole
1199 # constructor will just fail anyway as it tries to stick an
1200 # irrational number into a rational algebra.
1202 # Note: the same Jordan and inner-products work here,
1203 # because they are necessarily defined with respect to
1204 # ambient coordinates and not any particular basis.
1205 self
._rational
_algebra
= RationalBasisEuclideanJordanAlgebra(
1210 orthonormalize
=False,
1216 # Compute the deorthonormalized tables before we orthonormalize
1218 W
= V
.span_of_basis( vector_basis
)
1220 # Note: the Jordan and inner-products are defined in terms
1221 # of the ambient basis. It's important that their arguments
1222 # are in ambient coordinates as well.
1224 for j
in range(i
+1):
1225 # given basis w.r.t. ambient coords
1226 q_i
= vector_basis
[i
]
1227 q_j
= vector_basis
[j
]
1229 if basis_is_matrices
:
1233 elt
= jordan_product(q_i
, q_j
)
1234 ip
= inner_product(q_i
, q_j
)
1236 if basis_is_matrices
:
1237 # do another mat2vec because the multiplication
1238 # table is in terms of vectors
1241 # We overwrite the name "vector_basis" in a second, but never modify it
1242 # in place, to this effectively makes a copy of it.
1243 deortho_vector_basis
= vector_basis
1244 self
._deortho
_matrix
= None
1247 from mjo
.eja
.eja_utils
import gram_schmidt
1248 if basis_is_matrices
:
1249 vector_ip
= lambda x
,y
: inner_product(_vec2mat(x
), _vec2mat(y
))
1250 vector_basis
= gram_schmidt(vector_basis
, vector_ip
)
1252 vector_basis
= gram_schmidt(vector_basis
, inner_product
)
1254 W
= V
.span_of_basis( vector_basis
)
1256 # Normalize the "matrix" basis, too!
1257 basis
= vector_basis
1259 if basis_is_matrices
:
1260 basis
= tuple( map(_vec2mat
,basis
) )
1262 W
= V
.span_of_basis( vector_basis
)
1264 # Now "W" is the vector space of our algebra coordinates. The
1265 # variables "X1", "X2",... refer to the entries of vectors in
1266 # W. Thus to convert back and forth between the orthonormal
1267 # coordinates and the given ones, we need to stick the original
1269 U
= V
.span_of_basis( deortho_vector_basis
)
1270 self
._deortho
_matrix
= matrix( U
.coordinate_vector(q
)
1271 for q
in vector_basis
)
1273 # If the superclass constructor is going to verify the
1274 # symmetry of this table, it has better at least be
1277 mult_table
= [ [0 for j
in range(n
)] for i
in range(n
) ]
1278 ip_table
= [ [0 for j
in range(n
)] for i
in range(n
) ]
1280 mult_table
= [ [0 for j
in range(i
+1)] for i
in range(n
) ]
1281 ip_table
= [ [0 for j
in range(i
+1)] for i
in range(n
) ]
1283 # Note: the Jordan and inner-products are defined in terms
1284 # of the ambient basis. It's important that their arguments
1285 # are in ambient coordinates as well.
1287 for j
in range(i
+1):
1288 # ortho basis w.r.t. ambient coords
1289 q_i
= vector_basis
[i
]
1290 q_j
= vector_basis
[j
]
1292 if basis_is_matrices
:
1296 elt
= jordan_product(q_i
, q_j
)
1297 ip
= inner_product(q_i
, q_j
)
1299 if basis_is_matrices
:
1300 # do another mat2vec because the multiplication
1301 # table is in terms of vectors
1304 elt
= W
.coordinate_vector(elt
)
1305 mult_table
[i
][j
] = elt
1308 # The tables are square if we're verifying that they
1310 mult_table
[j
][i
] = elt
1313 if basis_is_matrices
:
1317 basis
= tuple( x
.column() for x
in basis
)
1319 super().__init
__(field
,
1324 basis
, # matrix basis
1329 def _charpoly_coefficients(self
):
1333 sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
1334 ....: JordanSpinEJA)
1338 The base ring of the resulting polynomial coefficients is what
1339 it should be, and not the rationals (unless the algebra was
1340 already over the rationals)::
1342 sage: J = JordanSpinEJA(3)
1343 sage: J._charpoly_coefficients()
1344 (X1^2 - X2^2 - X3^2, -2*X1)
1345 sage: a0 = J._charpoly_coefficients()[0]
1347 Algebraic Real Field
1348 sage: a0.base_ring()
1349 Algebraic Real Field
1352 if self
.base_ring() is QQ
:
1353 # There's no need to construct *another* algebra over the
1354 # rationals if this one is already over the rationals.
1355 superclass
= super(RationalBasisEuclideanJordanAlgebra
, self
)
1356 return superclass
._charpoly
_coefficients
()
1358 # Do the computation over the rationals. The answer will be
1359 # the same, because all we've done is a change of basis.
1360 # Then, change back from QQ to our real base ring
1361 a
= ( a_i
.change_ring(self
.base_ring())
1362 for a_i
in self
._rational
_algebra
._charpoly
_coefficients
() )
1364 # Now convert the coordinate variables back to the
1365 # deorthonormalized ones.
1366 R
= self
.coordinate_polynomial_ring()
1367 from sage
.modules
.free_module_element
import vector
1368 X
= vector(R
, R
.gens())
1369 BX
= self
._deortho
_matrix
*X
1371 subs_dict
= { X[i]: BX[i] for i in range(len(X)) }
1372 return tuple( a_i
.subs(subs_dict
) for a_i
in a
)
1374 class ConcreteEuclideanJordanAlgebra(RationalBasisEuclideanJordanAlgebra
):
1376 A class for the Euclidean Jordan algebras that we know by name.
1378 These are the Jordan algebras whose basis, multiplication table,
1379 rank, and so on are known a priori. More to the point, they are
1380 the Euclidean Jordan algebras for which we are able to conjure up
1381 a "random instance."
1385 sage: from mjo.eja.eja_algebra import ConcreteEuclideanJordanAlgebra
1389 Our basis is normalized with respect to the algebra's inner
1390 product, unless we specify otherwise::
1392 sage: set_random_seed()
1393 sage: J = ConcreteEuclideanJordanAlgebra.random_instance()
1394 sage: all( b.norm() == 1 for b in J.gens() )
1397 Since our basis is orthonormal with respect to the algebra's inner
1398 product, and since we know that this algebra is an EJA, any
1399 left-multiplication operator's matrix will be symmetric because
1400 natural->EJA basis representation is an isometry and within the
1401 EJA the operator is self-adjoint by the Jordan axiom::
1403 sage: set_random_seed()
1404 sage: J = ConcreteEuclideanJordanAlgebra.random_instance()
1405 sage: x = J.random_element()
1406 sage: x.operator().is_self_adjoint()
1411 def _max_random_instance_size():
1413 Return an integer "size" that is an upper bound on the size of
1414 this algebra when it is used in a random test
1415 case. Unfortunately, the term "size" is ambiguous -- when
1416 dealing with `R^n` under either the Hadamard or Jordan spin
1417 product, the "size" refers to the dimension `n`. When dealing
1418 with a matrix algebra (real symmetric or complex/quaternion
1419 Hermitian), it refers to the size of the matrix, which is far
1420 less than the dimension of the underlying vector space.
1422 This method must be implemented in each subclass.
1424 raise NotImplementedError
1427 def random_instance(cls
, *args
, **kwargs
):
1429 Return a random instance of this type of algebra.
1431 This method should be implemented in each subclass.
1433 from sage
.misc
.prandom
import choice
1434 eja_class
= choice(cls
.__subclasses
__())
1436 # These all bubble up to the RationalBasisEuclideanJordanAlgebra
1437 # superclass constructor, so any (kw)args valid there are also
1439 return eja_class
.random_instance(*args
, **kwargs
)
1442 class MatrixEuclideanJordanAlgebra
:
1446 Embed the matrix ``M`` into a space of real matrices.
1448 The matrix ``M`` can have entries in any field at the moment:
1449 the real numbers, complex numbers, or quaternions. And although
1450 they are not a field, we can probably support octonions at some
1451 point, too. This function returns a real matrix that "acts like"
1452 the original with respect to matrix multiplication; i.e.
1454 real_embed(M*N) = real_embed(M)*real_embed(N)
1457 raise NotImplementedError
1461 def real_unembed(M
):
1463 The inverse of :meth:`real_embed`.
1465 raise NotImplementedError
1468 def jordan_product(X
,Y
):
1469 return (X
*Y
+ Y
*X
)/2
1472 def trace_inner_product(cls
,X
,Y
):
1473 Xu
= cls
.real_unembed(X
)
1474 Yu
= cls
.real_unembed(Y
)
1475 tr
= (Xu
*Yu
).trace()
1478 # Works in QQ, AA, RDF, et cetera.
1480 except AttributeError:
1481 # A quaternion doesn't have a real() method, but does
1482 # have coefficient_tuple() method that returns the
1483 # coefficients of 1, i, j, and k -- in that order.
1484 return tr
.coefficient_tuple()[0]
1487 class RealMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra
):
1491 The identity function, for embedding real matrices into real
1497 def real_unembed(M
):
1499 The identity function, for unembedding real matrices from real
1505 class RealSymmetricEJA(ConcreteEuclideanJordanAlgebra
,
1506 RealMatrixEuclideanJordanAlgebra
):
1508 The rank-n simple EJA consisting of real symmetric n-by-n
1509 matrices, the usual symmetric Jordan product, and the trace inner
1510 product. It has dimension `(n^2 + n)/2` over the reals.
1514 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1518 sage: J = RealSymmetricEJA(2)
1519 sage: e0, e1, e2 = J.gens()
1527 In theory, our "field" can be any subfield of the reals::
1529 sage: RealSymmetricEJA(2, RDF)
1530 Euclidean Jordan algebra of dimension 3 over Real Double Field
1531 sage: RealSymmetricEJA(2, RR)
1532 Euclidean Jordan algebra of dimension 3 over Real Field with
1533 53 bits of precision
1537 The dimension of this algebra is `(n^2 + n) / 2`::
1539 sage: set_random_seed()
1540 sage: n_max = RealSymmetricEJA._max_random_instance_size()
1541 sage: n = ZZ.random_element(1, n_max)
1542 sage: J = RealSymmetricEJA(n)
1543 sage: J.dimension() == (n^2 + n)/2
1546 The Jordan multiplication is what we think it is::
1548 sage: set_random_seed()
1549 sage: J = RealSymmetricEJA.random_instance()
1550 sage: x,y = J.random_elements(2)
1551 sage: actual = (x*y).to_matrix()
1552 sage: X = x.to_matrix()
1553 sage: Y = y.to_matrix()
1554 sage: expected = (X*Y + Y*X)/2
1555 sage: actual == expected
1557 sage: J(expected) == x*y
1560 We can change the generator prefix::
1562 sage: RealSymmetricEJA(3, prefix='q').gens()
1563 (q0, q1, q2, q3, q4, q5)
1565 We can construct the (trivial) algebra of rank zero::
1567 sage: RealSymmetricEJA(0)
1568 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
1572 def _denormalized_basis(cls
, n
, field
):
1574 Return a basis for the space of real symmetric n-by-n matrices.
1578 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1582 sage: set_random_seed()
1583 sage: n = ZZ.random_element(1,5)
1584 sage: B = RealSymmetricEJA._denormalized_basis(n,QQ)
1585 sage: all( M.is_symmetric() for M in B)
1589 # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
1593 for j
in range(i
+1):
1594 Eij
= matrix(field
, n
, lambda k
,l
: k
==i
and l
==j
)
1598 Sij
= Eij
+ Eij
.transpose()
1604 def _max_random_instance_size():
1605 return 4 # Dimension 10
1608 def random_instance(cls
, field
=AA
, **kwargs
):
1610 Return a random instance of this type of algebra.
1612 n
= ZZ
.random_element(cls
._max
_random
_instance
_size
() + 1)
1613 return cls(n
, field
, **kwargs
)
1615 def __init__(self
, n
, field
=AA
, **kwargs
):
1616 basis
= self
._denormalized
_basis
(n
, field
)
1617 super(RealSymmetricEJA
, self
).__init
__(field
,
1619 self
.jordan_product
,
1620 self
.trace_inner_product
,
1622 self
.rank
.set_cache(n
)
1623 self
.one
.set_cache(self(matrix
.identity(field
,n
)))
1626 class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra
):
1630 Embed the n-by-n complex matrix ``M`` into the space of real
1631 matrices of size 2n-by-2n via the map the sends each entry `z = a +
1632 bi` to the block matrix ``[[a,b],[-b,a]]``.
1636 sage: from mjo.eja.eja_algebra import \
1637 ....: ComplexMatrixEuclideanJordanAlgebra
1641 sage: F = QuadraticField(-1, 'I')
1642 sage: x1 = F(4 - 2*i)
1643 sage: x2 = F(1 + 2*i)
1646 sage: M = matrix(F,2,[[x1,x2],[x3,x4]])
1647 sage: ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
1656 Embedding is a homomorphism (isomorphism, in fact)::
1658 sage: set_random_seed()
1659 sage: n = ZZ.random_element(3)
1660 sage: F = QuadraticField(-1, 'I')
1661 sage: X = random_matrix(F, n)
1662 sage: Y = random_matrix(F, n)
1663 sage: Xe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X)
1664 sage: Ye = ComplexMatrixEuclideanJordanAlgebra.real_embed(Y)
1665 sage: XYe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X*Y)
1672 raise ValueError("the matrix 'M' must be square")
1674 # We don't need any adjoined elements...
1675 field
= M
.base_ring().base_ring()
1679 a
= z
.list()[0] # real part, I guess
1680 b
= z
.list()[1] # imag part, I guess
1681 blocks
.append(matrix(field
, 2, [[a
,b
],[-b
,a
]]))
1683 return matrix
.block(field
, n
, blocks
)
1687 def real_unembed(M
):
1689 The inverse of _embed_complex_matrix().
1693 sage: from mjo.eja.eja_algebra import \
1694 ....: ComplexMatrixEuclideanJordanAlgebra
1698 sage: A = matrix(QQ,[ [ 1, 2, 3, 4],
1699 ....: [-2, 1, -4, 3],
1700 ....: [ 9, 10, 11, 12],
1701 ....: [-10, 9, -12, 11] ])
1702 sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(A)
1704 [ 10*I + 9 12*I + 11]
1708 Unembedding is the inverse of embedding::
1710 sage: set_random_seed()
1711 sage: F = QuadraticField(-1, 'I')
1712 sage: M = random_matrix(F, 3)
1713 sage: Me = ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
1714 sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
1720 raise ValueError("the matrix 'M' must be square")
1721 if not n
.mod(2).is_zero():
1722 raise ValueError("the matrix 'M' must be a complex embedding")
1724 # If "M" was normalized, its base ring might have roots
1725 # adjoined and they can stick around after unembedding.
1726 field
= M
.base_ring()
1727 R
= PolynomialRing(field
, 'z')
1730 # Sage doesn't know how to embed AA into QQbar, i.e. how
1731 # to adjoin sqrt(-1) to AA.
1734 F
= field
.extension(z
**2 + 1, 'I', embedding
=CLF(-1).sqrt())
1737 # Go top-left to bottom-right (reading order), converting every
1738 # 2-by-2 block we see to a single complex element.
1740 for k
in range(n
/2):
1741 for j
in range(n
/2):
1742 submat
= M
[2*k
:2*k
+2,2*j
:2*j
+2]
1743 if submat
[0,0] != submat
[1,1]:
1744 raise ValueError('bad on-diagonal submatrix')
1745 if submat
[0,1] != -submat
[1,0]:
1746 raise ValueError('bad off-diagonal submatrix')
1747 z
= submat
[0,0] + submat
[0,1]*i
1750 return matrix(F
, n
/2, elements
)
1754 def trace_inner_product(cls
,X
,Y
):
1756 Compute a matrix inner product in this algebra directly from
1761 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1765 This gives the same answer as the slow, default method implemented
1766 in :class:`MatrixEuclideanJordanAlgebra`::
1768 sage: set_random_seed()
1769 sage: J = ComplexHermitianEJA.random_instance()
1770 sage: x,y = J.random_elements(2)
1771 sage: Xe = x.to_matrix()
1772 sage: Ye = y.to_matrix()
1773 sage: X = ComplexHermitianEJA.real_unembed(Xe)
1774 sage: Y = ComplexHermitianEJA.real_unembed(Ye)
1775 sage: expected = (X*Y).trace().real()
1776 sage: actual = ComplexHermitianEJA.trace_inner_product(Xe,Ye)
1777 sage: actual == expected
1781 return RealMatrixEuclideanJordanAlgebra
.trace_inner_product(X
,Y
)/2
1784 class ComplexHermitianEJA(ConcreteEuclideanJordanAlgebra
,
1785 ComplexMatrixEuclideanJordanAlgebra
):
1787 The rank-n simple EJA consisting of complex Hermitian n-by-n
1788 matrices over the real numbers, the usual symmetric Jordan product,
1789 and the real-part-of-trace inner product. It has dimension `n^2` over
1794 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1798 In theory, our "field" can be any subfield of the reals::
1800 sage: ComplexHermitianEJA(2, RDF)
1801 Euclidean Jordan algebra of dimension 4 over Real Double Field
1802 sage: ComplexHermitianEJA(2, RR)
1803 Euclidean Jordan algebra of dimension 4 over Real Field with
1804 53 bits of precision
1808 The dimension of this algebra is `n^2`::
1810 sage: set_random_seed()
1811 sage: n_max = ComplexHermitianEJA._max_random_instance_size()
1812 sage: n = ZZ.random_element(1, n_max)
1813 sage: J = ComplexHermitianEJA(n)
1814 sage: J.dimension() == n^2
1817 The Jordan multiplication is what we think it is::
1819 sage: set_random_seed()
1820 sage: J = ComplexHermitianEJA.random_instance()
1821 sage: x,y = J.random_elements(2)
1822 sage: actual = (x*y).to_matrix()
1823 sage: X = x.to_matrix()
1824 sage: Y = y.to_matrix()
1825 sage: expected = (X*Y + Y*X)/2
1826 sage: actual == expected
1828 sage: J(expected) == x*y
1831 We can change the generator prefix::
1833 sage: ComplexHermitianEJA(2, prefix='z').gens()
1836 We can construct the (trivial) algebra of rank zero::
1838 sage: ComplexHermitianEJA(0)
1839 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
1844 def _denormalized_basis(cls
, n
, field
):
1846 Returns a basis for the space of complex Hermitian n-by-n matrices.
1848 Why do we embed these? Basically, because all of numerical linear
1849 algebra assumes that you're working with vectors consisting of `n`
1850 entries from a field and scalars from the same field. There's no way
1851 to tell SageMath that (for example) the vectors contain complex
1852 numbers, while the scalar field is real.
1856 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1860 sage: set_random_seed()
1861 sage: n = ZZ.random_element(1,5)
1862 sage: field = QuadraticField(2, 'sqrt2')
1863 sage: B = ComplexHermitianEJA._denormalized_basis(n, field)
1864 sage: all( M.is_symmetric() for M in B)
1868 R
= PolynomialRing(field
, 'z')
1870 F
= field
.extension(z
**2 + 1, 'I')
1873 # This is like the symmetric case, but we need to be careful:
1875 # * We want conjugate-symmetry, not just symmetry.
1876 # * The diagonal will (as a result) be real.
1880 for j
in range(i
+1):
1881 Eij
= matrix(F
, n
, lambda k
,l
: k
==i
and l
==j
)
1883 Sij
= cls
.real_embed(Eij
)
1886 # The second one has a minus because it's conjugated.
1887 Sij_real
= cls
.real_embed(Eij
+ Eij
.transpose())
1889 Sij_imag
= cls
.real_embed(I
*Eij
- I
*Eij
.transpose())
1892 # Since we embedded these, we can drop back to the "field" that we
1893 # started with instead of the complex extension "F".
1894 return tuple( s
.change_ring(field
) for s
in S
)
1897 def __init__(self
, n
, field
=AA
, **kwargs
):
1898 basis
= self
._denormalized
_basis
(n
,field
)
1899 super(ComplexHermitianEJA
, self
).__init
__(field
,
1901 self
.jordan_product
,
1902 self
.trace_inner_product
,
1904 self
.rank
.set_cache(n
)
1905 # TODO: pre-cache the identity!
1908 def _max_random_instance_size():
1909 return 3 # Dimension 9
1912 def random_instance(cls
, field
=AA
, **kwargs
):
1914 Return a random instance of this type of algebra.
1916 n
= ZZ
.random_element(cls
._max
_random
_instance
_size
() + 1)
1917 return cls(n
, field
, **kwargs
)
1919 class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra
):
1923 Embed the n-by-n quaternion matrix ``M`` into the space of real
1924 matrices of size 4n-by-4n by first sending each quaternion entry `z
1925 = a + bi + cj + dk` to the block-complex matrix ``[[a + bi,
1926 c+di],[-c + di, a-bi]]`, and then embedding those into a real
1931 sage: from mjo.eja.eja_algebra import \
1932 ....: QuaternionMatrixEuclideanJordanAlgebra
1936 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1937 sage: i,j,k = Q.gens()
1938 sage: x = 1 + 2*i + 3*j + 4*k
1939 sage: M = matrix(Q, 1, [[x]])
1940 sage: QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
1946 Embedding is a homomorphism (isomorphism, in fact)::
1948 sage: set_random_seed()
1949 sage: n = ZZ.random_element(2)
1950 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1951 sage: X = random_matrix(Q, n)
1952 sage: Y = random_matrix(Q, n)
1953 sage: Xe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X)
1954 sage: Ye = QuaternionMatrixEuclideanJordanAlgebra.real_embed(Y)
1955 sage: XYe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X*Y)
1960 quaternions
= M
.base_ring()
1963 raise ValueError("the matrix 'M' must be square")
1965 F
= QuadraticField(-1, 'I')
1970 t
= z
.coefficient_tuple()
1975 cplxM
= matrix(F
, 2, [[ a
+ b
*i
, c
+ d
*i
],
1976 [-c
+ d
*i
, a
- b
*i
]])
1977 realM
= ComplexMatrixEuclideanJordanAlgebra
.real_embed(cplxM
)
1978 blocks
.append(realM
)
1980 # We should have real entries by now, so use the realest field
1981 # we've got for the return value.
1982 return matrix
.block(quaternions
.base_ring(), n
, blocks
)
1987 def real_unembed(M
):
1989 The inverse of _embed_quaternion_matrix().
1993 sage: from mjo.eja.eja_algebra import \
1994 ....: QuaternionMatrixEuclideanJordanAlgebra
1998 sage: M = matrix(QQ, [[ 1, 2, 3, 4],
1999 ....: [-2, 1, -4, 3],
2000 ....: [-3, 4, 1, -2],
2001 ....: [-4, -3, 2, 1]])
2002 sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(M)
2003 [1 + 2*i + 3*j + 4*k]
2007 Unembedding is the inverse of embedding::
2009 sage: set_random_seed()
2010 sage: Q = QuaternionAlgebra(QQ, -1, -1)
2011 sage: M = random_matrix(Q, 3)
2012 sage: Me = QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
2013 sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
2019 raise ValueError("the matrix 'M' must be square")
2020 if not n
.mod(4).is_zero():
2021 raise ValueError("the matrix 'M' must be a quaternion embedding")
2023 # Use the base ring of the matrix to ensure that its entries can be
2024 # multiplied by elements of the quaternion algebra.
2025 field
= M
.base_ring()
2026 Q
= QuaternionAlgebra(field
,-1,-1)
2029 # Go top-left to bottom-right (reading order), converting every
2030 # 4-by-4 block we see to a 2-by-2 complex block, to a 1-by-1
2033 for l
in range(n
/4):
2034 for m
in range(n
/4):
2035 submat
= ComplexMatrixEuclideanJordanAlgebra
.real_unembed(
2036 M
[4*l
:4*l
+4,4*m
:4*m
+4] )
2037 if submat
[0,0] != submat
[1,1].conjugate():
2038 raise ValueError('bad on-diagonal submatrix')
2039 if submat
[0,1] != -submat
[1,0].conjugate():
2040 raise ValueError('bad off-diagonal submatrix')
2041 z
= submat
[0,0].real()
2042 z
+= submat
[0,0].imag()*i
2043 z
+= submat
[0,1].real()*j
2044 z
+= submat
[0,1].imag()*k
2047 return matrix(Q
, n
/4, elements
)
2051 def trace_inner_product(cls
,X
,Y
):
2053 Compute a matrix inner product in this algebra directly from
2058 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
2062 This gives the same answer as the slow, default method implemented
2063 in :class:`MatrixEuclideanJordanAlgebra`::
2065 sage: set_random_seed()
2066 sage: J = QuaternionHermitianEJA.random_instance()
2067 sage: x,y = J.random_elements(2)
2068 sage: Xe = x.to_matrix()
2069 sage: Ye = y.to_matrix()
2070 sage: X = QuaternionHermitianEJA.real_unembed(Xe)
2071 sage: Y = QuaternionHermitianEJA.real_unembed(Ye)
2072 sage: expected = (X*Y).trace().coefficient_tuple()[0]
2073 sage: actual = QuaternionHermitianEJA.trace_inner_product(Xe,Ye)
2074 sage: actual == expected
2078 return RealMatrixEuclideanJordanAlgebra
.trace_inner_product(X
,Y
)/4
2081 class QuaternionHermitianEJA(ConcreteEuclideanJordanAlgebra
,
2082 QuaternionMatrixEuclideanJordanAlgebra
):
2084 The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
2085 matrices, the usual symmetric Jordan product, and the
2086 real-part-of-trace inner product. It has dimension `2n^2 - n` over
2091 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
2095 In theory, our "field" can be any subfield of the reals::
2097 sage: QuaternionHermitianEJA(2, RDF)
2098 Euclidean Jordan algebra of dimension 6 over Real Double Field
2099 sage: QuaternionHermitianEJA(2, RR)
2100 Euclidean Jordan algebra of dimension 6 over Real Field with
2101 53 bits of precision
2105 The dimension of this algebra is `2*n^2 - n`::
2107 sage: set_random_seed()
2108 sage: n_max = QuaternionHermitianEJA._max_random_instance_size()
2109 sage: n = ZZ.random_element(1, n_max)
2110 sage: J = QuaternionHermitianEJA(n)
2111 sage: J.dimension() == 2*(n^2) - n
2114 The Jordan multiplication is what we think it is::
2116 sage: set_random_seed()
2117 sage: J = QuaternionHermitianEJA.random_instance()
2118 sage: x,y = J.random_elements(2)
2119 sage: actual = (x*y).to_matrix()
2120 sage: X = x.to_matrix()
2121 sage: Y = y.to_matrix()
2122 sage: expected = (X*Y + Y*X)/2
2123 sage: actual == expected
2125 sage: J(expected) == x*y
2128 We can change the generator prefix::
2130 sage: QuaternionHermitianEJA(2, prefix='a').gens()
2131 (a0, a1, a2, a3, a4, a5)
2133 We can construct the (trivial) algebra of rank zero::
2135 sage: QuaternionHermitianEJA(0)
2136 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2140 def _denormalized_basis(cls
, n
, field
):
2142 Returns a basis for the space of quaternion Hermitian n-by-n matrices.
2144 Why do we embed these? Basically, because all of numerical
2145 linear algebra assumes that you're working with vectors consisting
2146 of `n` entries from a field and scalars from the same field. There's
2147 no way to tell SageMath that (for example) the vectors contain
2148 complex numbers, while the scalar field is real.
2152 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
2156 sage: set_random_seed()
2157 sage: n = ZZ.random_element(1,5)
2158 sage: B = QuaternionHermitianEJA._denormalized_basis(n,QQ)
2159 sage: all( M.is_symmetric() for M in B )
2163 Q
= QuaternionAlgebra(QQ
,-1,-1)
2166 # This is like the symmetric case, but we need to be careful:
2168 # * We want conjugate-symmetry, not just symmetry.
2169 # * The diagonal will (as a result) be real.
2173 for j
in range(i
+1):
2174 Eij
= matrix(Q
, n
, lambda k
,l
: k
==i
and l
==j
)
2176 Sij
= cls
.real_embed(Eij
)
2179 # The second, third, and fourth ones have a minus
2180 # because they're conjugated.
2181 Sij_real
= cls
.real_embed(Eij
+ Eij
.transpose())
2183 Sij_I
= cls
.real_embed(I
*Eij
- I
*Eij
.transpose())
2185 Sij_J
= cls
.real_embed(J
*Eij
- J
*Eij
.transpose())
2187 Sij_K
= cls
.real_embed(K
*Eij
- K
*Eij
.transpose())
2190 # Since we embedded these, we can drop back to the "field" that we
2191 # started with instead of the quaternion algebra "Q".
2192 return tuple( s
.change_ring(field
) for s
in S
)
2195 def __init__(self
, n
, field
=AA
, **kwargs
):
2196 basis
= self
._denormalized
_basis
(n
,field
)
2197 super(QuaternionHermitianEJA
, self
).__init
__(field
,
2199 self
.jordan_product
,
2200 self
.trace_inner_product
,
2202 self
.rank
.set_cache(n
)
2203 # TODO: cache one()!
2206 def _max_random_instance_size():
2208 The maximum rank of a random QuaternionHermitianEJA.
2210 return 2 # Dimension 6
2213 def random_instance(cls
, field
=AA
, **kwargs
):
2215 Return a random instance of this type of algebra.
2217 n
= ZZ
.random_element(cls
._max
_random
_instance
_size
() + 1)
2218 return cls(n
, field
, **kwargs
)
2221 class HadamardEJA(ConcreteEuclideanJordanAlgebra
):
2223 Return the Euclidean Jordan Algebra corresponding to the set
2224 `R^n` under the Hadamard product.
2226 Note: this is nothing more than the Cartesian product of ``n``
2227 copies of the spin algebra. Once Cartesian product algebras
2228 are implemented, this can go.
2232 sage: from mjo.eja.eja_algebra import HadamardEJA
2236 This multiplication table can be verified by hand::
2238 sage: J = HadamardEJA(3)
2239 sage: e0,e1,e2 = J.gens()
2255 We can change the generator prefix::
2257 sage: HadamardEJA(3, prefix='r').gens()
2261 def __init__(self
, n
, field
=AA
, **kwargs
):
2262 V
= VectorSpace(field
, n
)
2265 def jordan_product(x
,y
):
2266 return V([ xi
*yi
for (xi
,yi
) in zip(x
,y
) ])
2267 def inner_product(x
,y
):
2268 return x
.inner_product(y
)
2270 super(HadamardEJA
, self
).__init
__(field
,
2275 self
.rank
.set_cache(n
)
2278 self
.one
.set_cache( self
.zero() )
2280 self
.one
.set_cache( sum(self
.gens()) )
2283 def _max_random_instance_size():
2285 The maximum dimension of a random HadamardEJA.
2290 def random_instance(cls
, field
=AA
, **kwargs
):
2292 Return a random instance of this type of algebra.
2294 n
= ZZ
.random_element(cls
._max
_random
_instance
_size
() + 1)
2295 return cls(n
, field
, **kwargs
)
2298 class BilinearFormEJA(ConcreteEuclideanJordanAlgebra
):
2300 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
2301 with the half-trace inner product and jordan product ``x*y =
2302 (<Bx,y>,y_bar>, x0*y_bar + y0*x_bar)`` where `B = 1 \times B22` is
2303 a symmetric positive-definite "bilinear form" matrix. Its
2304 dimension is the size of `B`, and it has rank two in dimensions
2305 larger than two. It reduces to the ``JordanSpinEJA`` when `B` is
2306 the identity matrix of order ``n``.
2308 We insist that the one-by-one upper-left identity block of `B` be
2309 passed in as well so that we can be passed a matrix of size zero
2310 to construct a trivial algebra.
2314 sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
2315 ....: JordanSpinEJA)
2319 When no bilinear form is specified, the identity matrix is used,
2320 and the resulting algebra is the Jordan spin algebra::
2322 sage: B = matrix.identity(AA,3)
2323 sage: J0 = BilinearFormEJA(B)
2324 sage: J1 = JordanSpinEJA(3)
2325 sage: J0.multiplication_table() == J0.multiplication_table()
2328 An error is raised if the matrix `B` does not correspond to a
2329 positive-definite bilinear form::
2331 sage: B = matrix.random(QQ,2,3)
2332 sage: J = BilinearFormEJA(B)
2333 Traceback (most recent call last):
2335 ValueError: bilinear form is not positive-definite
2336 sage: B = matrix.zero(QQ,3)
2337 sage: J = BilinearFormEJA(B)
2338 Traceback (most recent call last):
2340 ValueError: bilinear form is not positive-definite
2344 We can create a zero-dimensional algebra::
2346 sage: B = matrix.identity(AA,0)
2347 sage: J = BilinearFormEJA(B)
2351 We can check the multiplication condition given in the Jordan, von
2352 Neumann, and Wigner paper (and also discussed on my "On the
2353 symmetry..." paper). Note that this relies heavily on the standard
2354 choice of basis, as does anything utilizing the bilinear form
2355 matrix. We opt not to orthonormalize the basis, because if we
2356 did, we would have to normalize the `s_{i}` in a similar manner::
2358 sage: set_random_seed()
2359 sage: n = ZZ.random_element(5)
2360 sage: M = matrix.random(QQ, max(0,n-1), algorithm='unimodular')
2361 sage: B11 = matrix.identity(QQ,1)
2362 sage: B22 = M.transpose()*M
2363 sage: B = block_matrix(2,2,[ [B11,0 ],
2365 sage: J = BilinearFormEJA(B, orthonormalize=False)
2366 sage: eis = VectorSpace(M.base_ring(), M.ncols()).basis()
2367 sage: V = J.vector_space()
2368 sage: sis = [ J( V([0] + (M.inverse()*ei).list()).column() )
2369 ....: for ei in eis ]
2370 sage: actual = [ sis[i]*sis[j]
2371 ....: for i in range(n-1)
2372 ....: for j in range(n-1) ]
2373 sage: expected = [ J.one() if i == j else J.zero()
2374 ....: for i in range(n-1)
2375 ....: for j in range(n-1) ]
2376 sage: actual == expected
2379 def __init__(self
, B
, field
=AA
, **kwargs
):
2380 if not B
.is_positive_definite():
2381 raise ValueError("bilinear form is not positive-definite")
2384 V
= VectorSpace(field
, n
)
2386 def inner_product(x
,y
):
2387 return (B
*x
).inner_product(y
)
2389 def jordan_product(x
,y
):
2394 z0
= inner_product(x
,y
)
2395 zbar
= y0
*xbar
+ x0
*ybar
2396 return V([z0
] + zbar
.list())
2398 super(BilinearFormEJA
, self
).__init
__(field
,
2404 # The rank of this algebra is two, unless we're in a
2405 # one-dimensional ambient space (because the rank is bounded
2406 # by the ambient dimension).
2407 self
.rank
.set_cache(min(n
,2))
2410 self
.one
.set_cache( self
.zero() )
2412 self
.one
.set_cache( self
.monomial(0) )
2415 def _max_random_instance_size():
2417 The maximum dimension of a random BilinearFormEJA.
2422 def random_instance(cls
, field
=AA
, **kwargs
):
2424 Return a random instance of this algebra.
2426 n
= ZZ
.random_element(cls
._max
_random
_instance
_size
() + 1)
2428 B
= matrix
.identity(field
, n
)
2429 return cls(B
, field
, **kwargs
)
2431 B11
= matrix
.identity(field
,1)
2432 M
= matrix
.random(field
, n
-1)
2433 I
= matrix
.identity(field
, n
-1)
2434 alpha
= field
.zero()
2435 while alpha
.is_zero():
2436 alpha
= field
.random_element().abs()
2437 B22
= M
.transpose()*M
+ alpha
*I
2439 from sage
.matrix
.special
import block_matrix
2440 B
= block_matrix(2,2, [ [B11
, ZZ(0) ],
2443 return cls(B
, field
, **kwargs
)
2446 class JordanSpinEJA(BilinearFormEJA
):
2448 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
2449 with the usual inner product and jordan product ``x*y =
2450 (<x,y>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
2455 sage: from mjo.eja.eja_algebra import JordanSpinEJA
2459 This multiplication table can be verified by hand::
2461 sage: J = JordanSpinEJA(4)
2462 sage: e0,e1,e2,e3 = J.gens()
2478 We can change the generator prefix::
2480 sage: JordanSpinEJA(2, prefix='B').gens()
2485 Ensure that we have the usual inner product on `R^n`::
2487 sage: set_random_seed()
2488 sage: J = JordanSpinEJA.random_instance()
2489 sage: x,y = J.random_elements(2)
2490 sage: actual = x.inner_product(y)
2491 sage: expected = x.to_vector().inner_product(y.to_vector())
2492 sage: actual == expected
2496 def __init__(self
, n
, field
=AA
, **kwargs
):
2497 # This is a special case of the BilinearFormEJA with the identity
2498 # matrix as its bilinear form.
2499 B
= matrix
.identity(field
, n
)
2500 super(JordanSpinEJA
, self
).__init
__(B
, field
, **kwargs
)
2503 def _max_random_instance_size():
2505 The maximum dimension of a random JordanSpinEJA.
2510 def random_instance(cls
, field
=AA
, **kwargs
):
2512 Return a random instance of this type of algebra.
2514 Needed here to override the implementation for ``BilinearFormEJA``.
2516 n
= ZZ
.random_element(cls
._max
_random
_instance
_size
() + 1)
2517 return cls(n
, field
, **kwargs
)
2520 class TrivialEJA(ConcreteEuclideanJordanAlgebra
):
2522 The trivial Euclidean Jordan algebra consisting of only a zero element.
2526 sage: from mjo.eja.eja_algebra import TrivialEJA
2530 sage: J = TrivialEJA()
2537 sage: 7*J.one()*12*J.one()
2539 sage: J.one().inner_product(J.one())
2541 sage: J.one().norm()
2543 sage: J.one().subalgebra_generated_by()
2544 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2549 def __init__(self
, field
=AA
, **kwargs
):
2550 jordan_product
= lambda x
,y
: x
2551 inner_product
= lambda x
,y
: field(0)
2553 super(TrivialEJA
, self
).__init
__(field
,
2558 # The rank is zero using my definition, namely the dimension of the
2559 # largest subalgebra generated by any element.
2560 self
.rank
.set_cache(0)
2561 self
.one
.set_cache( self
.zero() )
2564 def random_instance(cls
, field
=AA
, **kwargs
):
2565 # We don't take a "size" argument so the superclass method is
2566 # inappropriate for us.
2567 return cls(field
, **kwargs
)
2569 class DirectSumEJA(FiniteDimensionalEuclideanJordanAlgebra
):
2571 The external (orthogonal) direct sum of two other Euclidean Jordan
2572 algebras. Essentially the Cartesian product of its two factors.
2573 Every Euclidean Jordan algebra decomposes into an orthogonal
2574 direct sum of simple Euclidean Jordan algebras, so no generality
2575 is lost by providing only this construction.
2579 sage: from mjo.eja.eja_algebra import (random_eja,
2581 ....: RealSymmetricEJA,
2586 sage: J1 = HadamardEJA(2)
2587 sage: J2 = RealSymmetricEJA(3)
2588 sage: J = DirectSumEJA(J1,J2)
2596 The external direct sum construction is only valid when the two factors
2597 have the same base ring; an error is raised otherwise::
2599 sage: set_random_seed()
2600 sage: J1 = random_eja(AA)
2601 sage: J2 = random_eja(QQ,orthonormalize=False)
2602 sage: J = DirectSumEJA(J1,J2)
2603 Traceback (most recent call last):
2605 ValueError: algebras must share the same base field
2608 def __init__(self
, J1
, J2
, **kwargs
):
2609 if J1
.base_ring() != J2
.base_ring():
2610 raise ValueError("algebras must share the same base field")
2611 field
= J1
.base_ring()
2613 self
._factors
= (J1
, J2
)
2617 V
= VectorSpace(field
, n
)
2618 mult_table
= [ [ V
.zero() for j
in range(i
+1) ]
2621 for j
in range(i
+1):
2622 p
= (J1
.monomial(i
)*J1
.monomial(j
)).to_vector()
2623 mult_table
[i
][j
] = V(p
.list() + [field
.zero()]*n2
)
2626 for j
in range(i
+1):
2627 p
= (J2
.monomial(i
)*J2
.monomial(j
)).to_vector()
2628 mult_table
[n1
+i
][n1
+j
] = V([field
.zero()]*n1
+ p
.list())
2630 # TODO: build the IP table here from the two constituent IP
2631 # matrices (it'll be block diagonal, I think).
2632 ip_table
= [ [ field
.zero() for j
in range(i
+1) ]
2634 super(DirectSumEJA
, self
).__init
__(field
,
2639 self
.rank
.set_cache(J1
.rank() + J2
.rank())
2644 Return the pair of this algebra's factors.
2648 sage: from mjo.eja.eja_algebra import (HadamardEJA,
2649 ....: JordanSpinEJA,
2654 sage: J1 = HadamardEJA(2,QQ)
2655 sage: J2 = JordanSpinEJA(3,QQ)
2656 sage: J = DirectSumEJA(J1,J2)
2658 (Euclidean Jordan algebra of dimension 2 over Rational Field,
2659 Euclidean Jordan algebra of dimension 3 over Rational Field)
2662 return self
._factors
2664 def projections(self
):
2666 Return a pair of projections onto this algebra's factors.
2670 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
2671 ....: ComplexHermitianEJA,
2676 sage: J1 = JordanSpinEJA(2)
2677 sage: J2 = ComplexHermitianEJA(2)
2678 sage: J = DirectSumEJA(J1,J2)
2679 sage: (pi_left, pi_right) = J.projections()
2680 sage: J.one().to_vector()
2682 sage: pi_left(J.one()).to_vector()
2684 sage: pi_right(J.one()).to_vector()
2688 (J1
,J2
) = self
.factors()
2691 V_basis
= self
.vector_space().basis()
2692 # Need to specify the dimensions explicitly so that we don't
2693 # wind up with a zero-by-zero matrix when we want e.g. a
2694 # zero-by-two matrix (important for composing things).
2695 P1
= matrix(self
.base_ring(), m
, m
+n
, V_basis
[:m
])
2696 P2
= matrix(self
.base_ring(), n
, m
+n
, V_basis
[m
:])
2697 pi_left
= FiniteDimensionalEuclideanJordanAlgebraOperator(self
,J1
,P1
)
2698 pi_right
= FiniteDimensionalEuclideanJordanAlgebraOperator(self
,J2
,P2
)
2699 return (pi_left
, pi_right
)
2701 def inclusions(self
):
2703 Return the pair of inclusion maps from our factors into us.
2707 sage: from mjo.eja.eja_algebra import (random_eja,
2708 ....: JordanSpinEJA,
2709 ....: RealSymmetricEJA,
2714 sage: J1 = JordanSpinEJA(3)
2715 sage: J2 = RealSymmetricEJA(2)
2716 sage: J = DirectSumEJA(J1,J2)
2717 sage: (iota_left, iota_right) = J.inclusions()
2718 sage: iota_left(J1.zero()) == J.zero()
2720 sage: iota_right(J2.zero()) == J.zero()
2722 sage: J1.one().to_vector()
2724 sage: iota_left(J1.one()).to_vector()
2726 sage: J2.one().to_vector()
2728 sage: iota_right(J2.one()).to_vector()
2730 sage: J.one().to_vector()
2735 Composing a projection with the corresponding inclusion should
2736 produce the identity map, and mismatching them should produce
2739 sage: set_random_seed()
2740 sage: J1 = random_eja()
2741 sage: J2 = random_eja()
2742 sage: J = DirectSumEJA(J1,J2)
2743 sage: (iota_left, iota_right) = J.inclusions()
2744 sage: (pi_left, pi_right) = J.projections()
2745 sage: pi_left*iota_left == J1.one().operator()
2747 sage: pi_right*iota_right == J2.one().operator()
2749 sage: (pi_left*iota_right).is_zero()
2751 sage: (pi_right*iota_left).is_zero()
2755 (J1
,J2
) = self
.factors()
2758 V_basis
= self
.vector_space().basis()
2759 # Need to specify the dimensions explicitly so that we don't
2760 # wind up with a zero-by-zero matrix when we want e.g. a
2761 # two-by-zero matrix (important for composing things).
2762 I1
= matrix
.column(self
.base_ring(), m
, m
+n
, V_basis
[:m
])
2763 I2
= matrix
.column(self
.base_ring(), n
, m
+n
, V_basis
[m
:])
2764 iota_left
= FiniteDimensionalEuclideanJordanAlgebraOperator(J1
,self
,I1
)
2765 iota_right
= FiniteDimensionalEuclideanJordanAlgebraOperator(J2
,self
,I2
)
2766 return (iota_left
, iota_right
)
2768 def inner_product(self
, x
, y
):
2770 The standard Cartesian inner-product.
2772 We project ``x`` and ``y`` onto our factors, and add up the
2773 inner-products from the subalgebras.
2778 sage: from mjo.eja.eja_algebra import (HadamardEJA,
2779 ....: QuaternionHermitianEJA,
2784 sage: J1 = HadamardEJA(3,QQ)
2785 sage: J2 = QuaternionHermitianEJA(2,QQ,orthonormalize=False)
2786 sage: J = DirectSumEJA(J1,J2)
2791 sage: x1.inner_product(x2)
2793 sage: y1.inner_product(y2)
2795 sage: J.one().inner_product(J.one())
2799 (pi_left
, pi_right
) = self
.projections()
2805 return (x1
.inner_product(y1
) + x2
.inner_product(y2
))
2809 random_eja
= ConcreteEuclideanJordanAlgebra
.random_instance