2 Euclidean Jordan Algebras. These are formally-real Jordan Algebras;
3 specifically those where u^2 + v^2 = 0 implies that u = v = 0. They
4 are used in optimization, and have some additional nice methods beyond
5 what can be supported in a general Jordan Algebra.
8 from itertools
import izip
, repeat
10 from sage
.algebras
.quatalg
.quaternion_algebra
import QuaternionAlgebra
11 from sage
.categories
.magmatic_algebras
import MagmaticAlgebras
12 from sage
.combinat
.free_module
import CombinatorialFreeModule
13 from sage
.matrix
.constructor
import matrix
14 from sage
.matrix
.matrix_space
import MatrixSpace
15 from sage
.misc
.cachefunc
import cached_method
16 from sage
.misc
.prandom
import choice
17 from sage
.misc
.table
import table
18 from sage
.modules
.free_module
import FreeModule
, VectorSpace
19 from sage
.rings
.all
import (ZZ
, QQ
, RR
, RLF
, CLF
,
22 from mjo
.eja
.eja_element
import FiniteDimensionalEuclideanJordanAlgebraElement
23 from mjo
.eja
.eja_utils
import _mat2vec
25 class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule
):
26 # This is an ugly hack needed to prevent the category framework
27 # from implementing a coercion from our base ring (e.g. the
28 # rationals) into the algebra. First of all -- such a coercion is
29 # nonsense to begin with. But more importantly, it tries to do so
30 # in the category of rings, and since our algebras aren't
31 # associative they generally won't be rings.
32 _no_generic_basering_coercion
= True
45 sage: from mjo.eja.eja_algebra import (JordanSpinEJA, random_eja)
49 By definition, Jordan multiplication commutes::
51 sage: set_random_seed()
52 sage: J = random_eja()
53 sage: x,y = J.random_elements(2)
59 The ``field`` we're given must be real::
61 sage: JordanSpinEJA(2,QQbar)
62 Traceback (most recent call last):
64 ValueError: field is not real
68 if not field
.is_subring(RR
):
69 # Note: this does return true for the real algebraic
70 # field, and any quadratic field where we've specified
72 raise ValueError('field is not real')
75 self
._natural
_basis
= natural_basis
78 category
= MagmaticAlgebras(field
).FiniteDimensional()
79 category
= category
.WithBasis().Unital()
81 fda
= super(FiniteDimensionalEuclideanJordanAlgebra
, self
)
83 range(len(mult_table
)),
86 self
.print_options(bracket
='')
88 # The multiplication table we're given is necessarily in terms
89 # of vectors, because we don't have an algebra yet for
90 # anything to be an element of. However, it's faster in the
91 # long run to have the multiplication table be in terms of
92 # algebra elements. We do this after calling the superclass
93 # constructor so that from_vector() knows what to do.
94 self
._multiplication
_table
= [ map(lambda x
: self
.from_vector(x
), ls
)
95 for ls
in mult_table
]
98 def _element_constructor_(self
, elt
):
100 Construct an element of this algebra from its natural
103 This gets called only after the parent element _call_ method
104 fails to find a coercion for the argument.
108 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
109 ....: RealCartesianProductEJA,
110 ....: RealSymmetricEJA)
114 The identity in `S^n` is converted to the identity in the EJA::
116 sage: J = RealSymmetricEJA(3)
117 sage: I = matrix.identity(QQ,3)
118 sage: J(I) == J.one()
121 This skew-symmetric matrix can't be represented in the EJA::
123 sage: J = RealSymmetricEJA(3)
124 sage: A = matrix(QQ,3, lambda i,j: i-j)
126 Traceback (most recent call last):
128 ArithmeticError: vector is not in free module
132 Ensure that we can convert any element of the two non-matrix
133 simple algebras (whose natural representations are their usual
134 vector representations) back and forth faithfully::
136 sage: set_random_seed()
137 sage: J = RealCartesianProductEJA.random_instance()
138 sage: x = J.random_element()
139 sage: J(x.to_vector().column()) == x
141 sage: J = JordanSpinEJA.random_instance()
142 sage: x = J.random_element()
143 sage: J(x.to_vector().column()) == x
148 # The superclass implementation of random_element()
149 # needs to be able to coerce "0" into the algebra.
152 natural_basis
= self
.natural_basis()
153 basis_space
= natural_basis
[0].matrix_space()
154 if elt
not in basis_space
:
155 raise ValueError("not a naturally-represented algebra element")
157 # Thanks for nothing! Matrix spaces aren't vector spaces in
158 # Sage, so we have to figure out its natural-basis coordinates
159 # ourselves. We use the basis space's ring instead of the
160 # element's ring because the basis space might be an algebraic
161 # closure whereas the base ring of the 3-by-3 identity matrix
162 # could be QQ instead of QQbar.
163 V
= VectorSpace(basis_space
.base_ring(), elt
.nrows()*elt
.ncols())
164 W
= V
.span_of_basis( _mat2vec(s
) for s
in natural_basis
)
165 coords
= W
.coordinate_vector(_mat2vec(elt
))
166 return self
.from_vector(coords
)
171 Return a string representation of ``self``.
175 sage: from mjo.eja.eja_algebra import JordanSpinEJA
179 Ensure that it says what we think it says::
181 sage: JordanSpinEJA(2, field=QQ)
182 Euclidean Jordan algebra of dimension 2 over Rational Field
183 sage: JordanSpinEJA(3, field=RDF)
184 Euclidean Jordan algebra of dimension 3 over Real Double Field
187 fmt
= "Euclidean Jordan algebra of dimension {} over {}"
188 return fmt
.format(self
.dimension(), self
.base_ring())
190 def product_on_basis(self
, i
, j
):
191 return self
._multiplication
_table
[i
][j
]
193 def _a_regular_element(self
):
195 Guess a regular element. Needed to compute the basis for our
196 characteristic polynomial coefficients.
200 sage: from mjo.eja.eja_algebra import random_eja
204 Ensure that this hacky method succeeds for every algebra that we
205 know how to construct::
207 sage: set_random_seed()
208 sage: J = random_eja()
209 sage: J._a_regular_element().is_regular()
214 z
= self
.sum( (i
+1)*gs
[i
] for i
in range(len(gs
)) )
215 if not z
.is_regular():
216 raise ValueError("don't know a regular element")
221 def _charpoly_basis_space(self
):
223 Return the vector space spanned by the basis used in our
224 characteristic polynomial coefficients. This is used not only to
225 compute those coefficients, but also any time we need to
226 evaluate the coefficients (like when we compute the trace or
229 z
= self
._a
_regular
_element
()
230 # Don't use the parent vector space directly here in case this
231 # happens to be a subalgebra. In that case, we would be e.g.
232 # two-dimensional but span_of_basis() would expect three
234 V
= VectorSpace(self
.base_ring(), self
.vector_space().dimension())
235 basis
= [ (z
**k
).to_vector() for k
in range(self
.rank()) ]
236 V1
= V
.span_of_basis( basis
)
237 b
= (V1
.basis() + V1
.complement().basis())
238 return V
.span_of_basis(b
)
243 def _charpoly_coeff(self
, i
):
245 Return the coefficient polynomial "a_{i}" of this algebra's
246 general characteristic polynomial.
248 Having this be a separate cached method lets us compute and
249 store the trace/determinant (a_{r-1} and a_{0} respectively)
250 separate from the entire characteristic polynomial.
252 (A_of_x
, x
, xr
, detA
) = self
._charpoly
_matrix
_system
()
253 R
= A_of_x
.base_ring()
255 # Guaranteed by theory
258 # Danger: the in-place modification is done for performance
259 # reasons (reconstructing a matrix with huge polynomial
260 # entries is slow), but I don't know how cached_method works,
261 # so it's highly possible that we're modifying some global
262 # list variable by reference, here. In other words, you
263 # probably shouldn't call this method twice on the same
264 # algebra, at the same time, in two threads
265 Ai_orig
= A_of_x
.column(i
)
266 A_of_x
.set_column(i
,xr
)
267 numerator
= A_of_x
.det()
268 A_of_x
.set_column(i
,Ai_orig
)
270 # We're relying on the theory here to ensure that each a_i is
271 # indeed back in R, and the added negative signs are to make
272 # the whole charpoly expression sum to zero.
273 return R(-numerator
/detA
)
277 def _charpoly_matrix_system(self
):
279 Compute the matrix whose entries A_ij are polynomials in
280 X1,...,XN, the vector ``x`` of variables X1,...,XN, the vector
281 corresponding to `x^r` and the determinent of the matrix A =
282 [A_ij]. In other words, all of the fixed (cachable) data needed
283 to compute the coefficients of the characteristic polynomial.
288 # Turn my vector space into a module so that "vectors" can
289 # have multivatiate polynomial entries.
290 names
= tuple('X' + str(i
) for i
in range(1,n
+1))
291 R
= PolynomialRing(self
.base_ring(), names
)
293 # Using change_ring() on the parent's vector space doesn't work
294 # here because, in a subalgebra, that vector space has a basis
295 # and change_ring() tries to bring the basis along with it. And
296 # that doesn't work unless the new ring is a PID, which it usually
300 # Now let x = (X1,X2,...,Xn) be the vector whose entries are
304 # And figure out the "left multiplication by x" matrix in
307 monomial_matrices
= [ self
.monomial(i
).operator().matrix()
308 for i
in range(n
) ] # don't recompute these!
310 ek
= self
.monomial(k
).to_vector()
312 sum( x
[i
]*(monomial_matrices
[i
]*ek
)
313 for i
in range(n
) ) )
314 Lx
= matrix
.column(R
, lmbx_cols
)
316 # Now we can compute powers of x "symbolically"
317 x_powers
= [self
.one().to_vector(), x
]
318 for d
in range(2, r
+1):
319 x_powers
.append( Lx
*(x_powers
[-1]) )
321 idmat
= matrix
.identity(R
, n
)
323 W
= self
._charpoly
_basis
_space
()
324 W
= W
.change_ring(R
.fraction_field())
326 # Starting with the standard coordinates x = (X1,X2,...,Xn)
327 # and then converting the entries to W-coordinates allows us
328 # to pass in the standard coordinates to the charpoly and get
329 # back the right answer. Specifically, with x = (X1,X2,...,Xn),
332 # W.coordinates(x^2) eval'd at (standard z-coords)
336 # W-coords of (standard coords of x^2 eval'd at std-coords of z)
338 # We want the middle equivalent thing in our matrix, but use
339 # the first equivalent thing instead so that we can pass in
340 # standard coordinates.
341 x_powers
= [ W
.coordinate_vector(xp
) for xp
in x_powers
]
342 l2
= [idmat
.column(k
-1) for k
in range(r
+1, n
+1)]
343 A_of_x
= matrix
.column(R
, n
, (x_powers
[:r
] + l2
))
344 return (A_of_x
, x
, x_powers
[r
], A_of_x
.det())
348 def characteristic_polynomial(self
):
350 Return a characteristic polynomial that works for all elements
353 The resulting polynomial has `n+1` variables, where `n` is the
354 dimension of this algebra. The first `n` variables correspond to
355 the coordinates of an algebra element: when evaluated at the
356 coordinates of an algebra element with respect to a certain
357 basis, the result is a univariate polynomial (in the one
358 remaining variable ``t``), namely the characteristic polynomial
363 sage: from mjo.eja.eja_algebra import JordanSpinEJA
367 The characteristic polynomial in the spin algebra is given in
368 Alizadeh, Example 11.11::
370 sage: J = JordanSpinEJA(3)
371 sage: p = J.characteristic_polynomial(); p
372 X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2
373 sage: xvec = J.one().to_vector()
381 # The list of coefficient polynomials a_1, a_2, ..., a_n.
382 a
= [ self
._charpoly
_coeff
(i
) for i
in range(n
) ]
384 # We go to a bit of trouble here to reorder the
385 # indeterminates, so that it's easier to evaluate the
386 # characteristic polynomial at x's coordinates and get back
387 # something in terms of t, which is what we want.
389 S
= PolynomialRing(self
.base_ring(),'t')
391 S
= PolynomialRing(S
, R
.variable_names())
394 # Note: all entries past the rth should be zero. The
395 # coefficient of the highest power (x^r) is 1, but it doesn't
396 # appear in the solution vector which contains coefficients
397 # for the other powers (to make them sum to x^r).
399 a
[r
] = 1 # corresponds to x^r
401 # When the rank is equal to the dimension, trying to
402 # assign a[r] goes out-of-bounds.
403 a
.append(1) # corresponds to x^r
405 return sum( a
[k
]*(t
**k
) for k
in xrange(len(a
)) )
408 def inner_product(self
, x
, y
):
410 The inner product associated with this Euclidean Jordan algebra.
412 Defaults to the trace inner product, but can be overridden by
413 subclasses if they are sure that the necessary properties are
418 sage: from mjo.eja.eja_algebra import random_eja
422 Our inner product is "associative," which means the following for
423 a symmetric bilinear form::
425 sage: set_random_seed()
426 sage: J = random_eja()
427 sage: x,y,z = J.random_elements(3)
428 sage: (x*y).inner_product(z) == y.inner_product(x*z)
432 X
= x
.natural_representation()
433 Y
= y
.natural_representation()
434 return self
.natural_inner_product(X
,Y
)
437 def is_trivial(self
):
439 Return whether or not this algebra is trivial.
441 A trivial algebra contains only the zero element.
445 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
449 sage: J = ComplexHermitianEJA(3)
452 sage: A = J.zero().subalgebra_generated_by()
457 return self
.dimension() == 0
460 def multiplication_table(self
):
462 Return a visual representation of this algebra's multiplication
463 table (on basis elements).
467 sage: from mjo.eja.eja_algebra import JordanSpinEJA
471 sage: J = JordanSpinEJA(4)
472 sage: J.multiplication_table()
473 +----++----+----+----+----+
474 | * || e0 | e1 | e2 | e3 |
475 +====++====+====+====+====+
476 | e0 || e0 | e1 | e2 | e3 |
477 +----++----+----+----+----+
478 | e1 || e1 | e0 | 0 | 0 |
479 +----++----+----+----+----+
480 | e2 || e2 | 0 | e0 | 0 |
481 +----++----+----+----+----+
482 | e3 || e3 | 0 | 0 | e0 |
483 +----++----+----+----+----+
486 M
= list(self
._multiplication
_table
) # copy
487 for i
in xrange(len(M
)):
488 # M had better be "square"
489 M
[i
] = [self
.monomial(i
)] + M
[i
]
490 M
= [["*"] + list(self
.gens())] + M
491 return table(M
, header_row
=True, header_column
=True, frame
=True)
494 def natural_basis(self
):
496 Return a more-natural representation of this algebra's basis.
498 Every finite-dimensional Euclidean Jordan Algebra is a direct
499 sum of five simple algebras, four of which comprise Hermitian
500 matrices. This method returns the original "natural" basis
501 for our underlying vector space. (Typically, the natural basis
502 is used to construct the multiplication table in the first place.)
504 Note that this will always return a matrix. The standard basis
505 in `R^n` will be returned as `n`-by-`1` column matrices.
509 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
510 ....: RealSymmetricEJA)
514 sage: J = RealSymmetricEJA(2)
516 Finite family {0: e0, 1: e1, 2: e2}
517 sage: J.natural_basis()
519 [1 0] [ 0 1/2*sqrt2] [0 0]
520 [0 0], [1/2*sqrt2 0], [0 1]
525 sage: J = JordanSpinEJA(2)
527 Finite family {0: e0, 1: e1}
528 sage: J.natural_basis()
535 if self
._natural
_basis
is None:
536 M
= self
.natural_basis_space()
537 return tuple( M(b
.to_vector()) for b
in self
.basis() )
539 return self
._natural
_basis
542 def natural_basis_space(self
):
544 Return the matrix space in which this algebra's natural basis
547 if self
._natural
_basis
is None or len(self
._natural
_basis
) == 0:
548 return MatrixSpace(self
.base_ring(), self
.dimension(), 1)
550 return self
._natural
_basis
[0].matrix_space()
554 def natural_inner_product(X
,Y
):
556 Compute the inner product of two naturally-represented elements.
558 For example in the real symmetric matrix EJA, this will compute
559 the trace inner-product of two n-by-n symmetric matrices. The
560 default should work for the real cartesian product EJA, the
561 Jordan spin EJA, and the real symmetric matrices. The others
562 will have to be overridden.
564 return (X
.conjugate_transpose()*Y
).trace()
570 Return the unit element of this algebra.
574 sage: from mjo.eja.eja_algebra import (RealCartesianProductEJA,
579 sage: J = RealCartesianProductEJA(5)
581 e0 + e1 + e2 + e3 + e4
585 The identity element acts like the identity::
587 sage: set_random_seed()
588 sage: J = random_eja()
589 sage: x = J.random_element()
590 sage: J.one()*x == x and x*J.one() == x
593 The matrix of the unit element's operator is the identity::
595 sage: set_random_seed()
596 sage: J = random_eja()
597 sage: actual = J.one().operator().matrix()
598 sage: expected = matrix.identity(J.base_ring(), J.dimension())
599 sage: actual == expected
603 # We can brute-force compute the matrices of the operators
604 # that correspond to the basis elements of this algebra.
605 # If some linear combination of those basis elements is the
606 # algebra identity, then the same linear combination of
607 # their matrices has to be the identity matrix.
609 # Of course, matrices aren't vectors in sage, so we have to
610 # appeal to the "long vectors" isometry.
611 oper_vecs
= [ _mat2vec(g
.operator().matrix()) for g
in self
.gens() ]
613 # Now we use basis linear algebra to find the coefficients,
614 # of the matrices-as-vectors-linear-combination, which should
615 # work for the original algebra basis too.
616 A
= matrix
.column(self
.base_ring(), oper_vecs
)
618 # We used the isometry on the left-hand side already, but we
619 # still need to do it for the right-hand side. Recall that we
620 # wanted something that summed to the identity matrix.
621 b
= _mat2vec( matrix
.identity(self
.base_ring(), self
.dimension()) )
623 # Now if there's an identity element in the algebra, this should work.
624 coeffs
= A
.solve_right(b
)
625 return self
.linear_combination(zip(self
.gens(), coeffs
))
628 def random_element(self
):
629 # Temporary workaround for https://trac.sagemath.org/ticket/28327
630 if self
.is_trivial():
633 s
= super(FiniteDimensionalEuclideanJordanAlgebra
, self
)
634 return s
.random_element()
636 def random_elements(self
, count
):
638 Return ``count`` random elements as a tuple.
642 sage: from mjo.eja.eja_algebra import JordanSpinEJA
646 sage: J = JordanSpinEJA(3)
647 sage: x,y,z = J.random_elements(3)
648 sage: all( [ x in J, y in J, z in J ])
650 sage: len( J.random_elements(10) ) == 10
654 return tuple( self
.random_element() for idx
in xrange(count
) )
659 Return the rank of this EJA.
663 The author knows of no algorithm to compute the rank of an EJA
664 where only the multiplication table is known. In lieu of one, we
665 require the rank to be specified when the algebra is created,
666 and simply pass along that number here.
670 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
671 ....: RealSymmetricEJA,
672 ....: ComplexHermitianEJA,
673 ....: QuaternionHermitianEJA,
678 The rank of the Jordan spin algebra is always two::
680 sage: JordanSpinEJA(2).rank()
682 sage: JordanSpinEJA(3).rank()
684 sage: JordanSpinEJA(4).rank()
687 The rank of the `n`-by-`n` Hermitian real, complex, or
688 quaternion matrices is `n`::
690 sage: RealSymmetricEJA(4).rank()
692 sage: ComplexHermitianEJA(3).rank()
694 sage: QuaternionHermitianEJA(2).rank()
699 Ensure that every EJA that we know how to construct has a
700 positive integer rank::
702 sage: set_random_seed()
703 sage: r = random_eja().rank()
704 sage: r in ZZ and r > 0
711 def vector_space(self
):
713 Return the vector space that underlies this algebra.
717 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
721 sage: J = RealSymmetricEJA(2)
722 sage: J.vector_space()
723 Vector space of dimension 3 over...
726 return self
.zero().to_vector().parent().ambient_vector_space()
729 Element
= FiniteDimensionalEuclideanJordanAlgebraElement
732 class KnownRankEJA(object):
734 A class for algebras that we actually know we can construct. The
735 main issue is that, for most of our methods to make sense, we need
736 to know the rank of our algebra. Thus we can't simply generate a
737 "random" algebra, or even check that a given basis and product
738 satisfy the axioms; because even if everything looks OK, we wouldn't
739 know the rank we need to actuallty build the thing.
741 Not really a subclass of FDEJA because doing that causes method
742 resolution errors, e.g.
744 TypeError: Error when calling the metaclass bases
745 Cannot create a consistent method resolution
746 order (MRO) for bases FiniteDimensionalEuclideanJordanAlgebra,
751 def _max_test_case_size():
753 Return an integer "size" that is an upper bound on the size of
754 this algebra when it is used in a random test
755 case. Unfortunately, the term "size" is quite vague -- when
756 dealing with `R^n` under either the Hadamard or Jordan spin
757 product, the "size" refers to the dimension `n`. When dealing
758 with a matrix algebra (real symmetric or complex/quaternion
759 Hermitian), it refers to the size of the matrix, which is
760 far less than the dimension of the underlying vector space.
762 We default to five in this class, which is safe in `R^n`. The
763 matrix algebra subclasses (or any class where the "size" is
764 interpreted to be far less than the dimension) should override
765 with a smaller number.
770 def random_instance(cls
, field
=QQ
, **kwargs
):
772 Return a random instance of this type of algebra.
774 Beware, this will crash for "most instances" because the
775 constructor below looks wrong.
777 n
= ZZ
.random_element(cls
._max
_test
_case
_size
()) + 1
778 return cls(n
, field
, **kwargs
)
781 class RealCartesianProductEJA(FiniteDimensionalEuclideanJordanAlgebra
,
784 Return the Euclidean Jordan Algebra corresponding to the set
785 `R^n` under the Hadamard product.
787 Note: this is nothing more than the Cartesian product of ``n``
788 copies of the spin algebra. Once Cartesian product algebras
789 are implemented, this can go.
793 sage: from mjo.eja.eja_algebra import RealCartesianProductEJA
797 This multiplication table can be verified by hand::
799 sage: J = RealCartesianProductEJA(3)
800 sage: e0,e1,e2 = J.gens()
816 We can change the generator prefix::
818 sage: RealCartesianProductEJA(3, prefix='r').gens()
822 def __init__(self
, n
, field
=QQ
, **kwargs
):
823 V
= VectorSpace(field
, n
)
824 mult_table
= [ [ V
.gen(i
)*(i
== j
) for j
in xrange(n
) ]
827 fdeja
= super(RealCartesianProductEJA
, self
)
828 return fdeja
.__init
__(field
, mult_table
, rank
=n
, **kwargs
)
830 def inner_product(self
, x
, y
):
832 Faster to reimplement than to use natural representations.
836 sage: from mjo.eja.eja_algebra import RealCartesianProductEJA
840 Ensure that this is the usual inner product for the algebras
843 sage: set_random_seed()
844 sage: J = RealCartesianProductEJA.random_instance()
845 sage: x,y = J.random_elements(2)
846 sage: X = x.natural_representation()
847 sage: Y = y.natural_representation()
848 sage: x.inner_product(y) == J.natural_inner_product(X,Y)
852 return x
.to_vector().inner_product(y
.to_vector())
855 def random_eja(field
=QQ
):
857 Return a "random" finite-dimensional Euclidean Jordan Algebra.
861 For now, we choose a random natural number ``n`` (greater than zero)
862 and then give you back one of the following:
864 * The cartesian product of the rational numbers ``n`` times; this is
865 ``QQ^n`` with the Hadamard product.
867 * The Jordan spin algebra on ``QQ^n``.
869 * The ``n``-by-``n`` rational symmetric matrices with the symmetric
872 * The ``n``-by-``n`` complex-rational Hermitian matrices embedded
873 in the space of ``2n``-by-``2n`` real symmetric matrices.
875 * The ``n``-by-``n`` quaternion-rational Hermitian matrices embedded
876 in the space of ``4n``-by-``4n`` real symmetric matrices.
878 Later this might be extended to return Cartesian products of the
883 sage: from mjo.eja.eja_algebra import random_eja
888 Euclidean Jordan algebra of dimension...
891 classname
= choice(KnownRankEJA
.__subclasses
__())
892 return classname
.random_instance(field
=field
)
899 class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra
):
901 def _max_test_case_size():
902 # Play it safe, since this will be squared and the underlying
903 # field can have dimension 4 (quaternions) too.
906 def __init__(self
, field
, basis
, rank
, normalize_basis
=True, **kwargs
):
908 Compared to the superclass constructor, we take a basis instead of
909 a multiplication table because the latter can be computed in terms
910 of the former when the product is known (like it is here).
912 # Used in this class's fast _charpoly_coeff() override.
913 self
._basis
_normalizers
= None
915 # We're going to loop through this a few times, so now's a good
916 # time to ensure that it isn't a generator expression.
919 if rank
> 1 and normalize_basis
:
920 # We'll need sqrt(2) to normalize the basis, and this
921 # winds up in the multiplication table, so the whole
922 # algebra needs to be over the field extension.
923 R
= PolynomialRing(field
, 'z')
926 if p
.is_irreducible():
927 field
= field
.extension(p
, 'sqrt2', embedding
=RLF(2).sqrt())
928 basis
= tuple( s
.change_ring(field
) for s
in basis
)
929 self
._basis
_normalizers
= tuple(
930 ~
(self
.natural_inner_product(s
,s
).sqrt()) for s
in basis
)
931 basis
= tuple(s
*c
for (s
,c
) in izip(basis
,self
._basis
_normalizers
))
933 Qs
= self
.multiplication_table_from_matrix_basis(basis
)
935 fdeja
= super(MatrixEuclideanJordanAlgebra
, self
)
936 return fdeja
.__init
__(field
,
944 def _charpoly_coeff(self
, i
):
946 Override the parent method with something that tries to compute
947 over a faster (non-extension) field.
949 if self
._basis
_normalizers
is None:
950 # We didn't normalize, so assume that the basis we started
951 # with had entries in a nice field.
952 return super(MatrixEuclideanJordanAlgebra
, self
)._charpoly
_coeff
(i
)
954 basis
= ( (b
/n
) for (b
,n
) in izip(self
.natural_basis(),
955 self
._basis
_normalizers
) )
957 # Do this over the rationals and convert back at the end.
958 J
= MatrixEuclideanJordanAlgebra(QQ
,
961 normalize_basis
=False)
962 (_
,x
,_
,_
) = J
._charpoly
_matrix
_system
()
963 p
= J
._charpoly
_coeff
(i
)
964 # p might be missing some vars, have to substitute "optionally"
965 pairs
= izip(x
.base_ring().gens(), self
._basis
_normalizers
)
966 substitutions
= { v: v*c for (v,c) in pairs }
967 result
= p
.subs(substitutions
)
969 # The result of "subs" can be either a coefficient-ring
970 # element or a polynomial. Gotta handle both cases.
972 return self
.base_ring()(result
)
974 return result
.change_ring(self
.base_ring())
978 def multiplication_table_from_matrix_basis(basis
):
980 At least three of the five simple Euclidean Jordan algebras have the
981 symmetric multiplication (A,B) |-> (AB + BA)/2, where the
982 multiplication on the right is matrix multiplication. Given a basis
983 for the underlying matrix space, this function returns a
984 multiplication table (obtained by looping through the basis
985 elements) for an algebra of those matrices.
987 # In S^2, for example, we nominally have four coordinates even
988 # though the space is of dimension three only. The vector space V
989 # is supposed to hold the entire long vector, and the subspace W
990 # of V will be spanned by the vectors that arise from symmetric
991 # matrices. Thus for S^2, dim(V) == 4 and dim(W) == 3.
992 field
= basis
[0].base_ring()
993 dimension
= basis
[0].nrows()
995 V
= VectorSpace(field
, dimension
**2)
996 W
= V
.span_of_basis( _mat2vec(s
) for s
in basis
)
998 mult_table
= [[W
.zero() for j
in xrange(n
)] for i
in xrange(n
)]
1001 mat_entry
= (basis
[i
]*basis
[j
] + basis
[j
]*basis
[i
])/2
1002 mult_table
[i
][j
] = W
.coordinate_vector(_mat2vec(mat_entry
))
1010 Embed the matrix ``M`` into a space of real matrices.
1012 The matrix ``M`` can have entries in any field at the moment:
1013 the real numbers, complex numbers, or quaternions. And although
1014 they are not a field, we can probably support octonions at some
1015 point, too. This function returns a real matrix that "acts like"
1016 the original with respect to matrix multiplication; i.e.
1018 real_embed(M*N) = real_embed(M)*real_embed(N)
1021 raise NotImplementedError
1025 def real_unembed(M
):
1027 The inverse of :meth:`real_embed`.
1029 raise NotImplementedError
1033 def natural_inner_product(cls
,X
,Y
):
1034 Xu
= cls
.real_unembed(X
)
1035 Yu
= cls
.real_unembed(Y
)
1036 tr
= (Xu
*Yu
).trace()
1039 # It's real already.
1042 # Otherwise, try the thing that works for complex numbers; and
1043 # if that doesn't work, the thing that works for quaternions.
1045 return tr
.vector()[0] # real part, imag part is index 1
1046 except AttributeError:
1047 # A quaternions doesn't have a vector() method, but does
1048 # have coefficient_tuple() method that returns the
1049 # coefficients of 1, i, j, and k -- in that order.
1050 return tr
.coefficient_tuple()[0]
1053 class RealMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra
):
1057 The identity function, for embedding real matrices into real
1063 def real_unembed(M
):
1065 The identity function, for unembedding real matrices from real
1071 class RealSymmetricEJA(RealMatrixEuclideanJordanAlgebra
, KnownRankEJA
):
1073 The rank-n simple EJA consisting of real symmetric n-by-n
1074 matrices, the usual symmetric Jordan product, and the trace inner
1075 product. It has dimension `(n^2 + n)/2` over the reals.
1079 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1083 sage: J = RealSymmetricEJA(2)
1084 sage: e0, e1, e2 = J.gens()
1092 In theory, our "field" can be any subfield of the reals::
1094 sage: RealSymmetricEJA(2, AA)
1095 Euclidean Jordan algebra of dimension 3 over Algebraic Real Field
1096 sage: RealSymmetricEJA(2, RR)
1097 Euclidean Jordan algebra of dimension 3 over Real Field with
1098 53 bits of precision
1102 The dimension of this algebra is `(n^2 + n) / 2`::
1104 sage: set_random_seed()
1105 sage: n_max = RealSymmetricEJA._max_test_case_size()
1106 sage: n = ZZ.random_element(1, n_max)
1107 sage: J = RealSymmetricEJA(n)
1108 sage: J.dimension() == (n^2 + n)/2
1111 The Jordan multiplication is what we think it is::
1113 sage: set_random_seed()
1114 sage: J = RealSymmetricEJA.random_instance()
1115 sage: x,y = J.random_elements(2)
1116 sage: actual = (x*y).natural_representation()
1117 sage: X = x.natural_representation()
1118 sage: Y = y.natural_representation()
1119 sage: expected = (X*Y + Y*X)/2
1120 sage: actual == expected
1122 sage: J(expected) == x*y
1125 We can change the generator prefix::
1127 sage: RealSymmetricEJA(3, prefix='q').gens()
1128 (q0, q1, q2, q3, q4, q5)
1130 Our natural basis is normalized with respect to the natural inner
1131 product unless we specify otherwise::
1133 sage: set_random_seed()
1134 sage: J = RealSymmetricEJA.random_instance()
1135 sage: all( b.norm() == 1 for b in J.gens() )
1138 Since our natural basis is normalized with respect to the natural
1139 inner product, and since we know that this algebra is an EJA, any
1140 left-multiplication operator's matrix will be symmetric because
1141 natural->EJA basis representation is an isometry and within the EJA
1142 the operator is self-adjoint by the Jordan axiom::
1144 sage: set_random_seed()
1145 sage: x = RealSymmetricEJA.random_instance().random_element()
1146 sage: x.operator().matrix().is_symmetric()
1151 def _denormalized_basis(cls
, n
, field
):
1153 Return a basis for the space of real symmetric n-by-n matrices.
1157 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1161 sage: set_random_seed()
1162 sage: n = ZZ.random_element(1,5)
1163 sage: B = RealSymmetricEJA._denormalized_basis(n,QQ)
1164 sage: all( M.is_symmetric() for M in B)
1168 # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
1172 for j
in xrange(i
+1):
1173 Eij
= matrix(field
, n
, lambda k
,l
: k
==i
and l
==j
)
1177 Sij
= Eij
+ Eij
.transpose()
1183 def _max_test_case_size():
1184 return 4 # Dimension 10
1187 def __init__(self
, n
, field
=QQ
, **kwargs
):
1188 basis
= self
._denormalized
_basis
(n
, field
)
1189 super(RealSymmetricEJA
, self
).__init
__(field
, basis
, n
, **kwargs
)
1192 class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra
):
1196 Embed the n-by-n complex matrix ``M`` into the space of real
1197 matrices of size 2n-by-2n via the map the sends each entry `z = a +
1198 bi` to the block matrix ``[[a,b],[-b,a]]``.
1202 sage: from mjo.eja.eja_algebra import \
1203 ....: ComplexMatrixEuclideanJordanAlgebra
1207 sage: F = QuadraticField(-1, 'i')
1208 sage: x1 = F(4 - 2*i)
1209 sage: x2 = F(1 + 2*i)
1212 sage: M = matrix(F,2,[[x1,x2],[x3,x4]])
1213 sage: ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
1222 Embedding is a homomorphism (isomorphism, in fact)::
1224 sage: set_random_seed()
1225 sage: n_max = ComplexMatrixEuclideanJordanAlgebra._max_test_case_size()
1226 sage: n = ZZ.random_element(n_max)
1227 sage: F = QuadraticField(-1, 'i')
1228 sage: X = random_matrix(F, n)
1229 sage: Y = random_matrix(F, n)
1230 sage: Xe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X)
1231 sage: Ye = ComplexMatrixEuclideanJordanAlgebra.real_embed(Y)
1232 sage: XYe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X*Y)
1239 raise ValueError("the matrix 'M' must be square")
1241 # We don't need any adjoined elements...
1242 field
= M
.base_ring().base_ring()
1246 a
= z
.list()[0] # real part, I guess
1247 b
= z
.list()[1] # imag part, I guess
1248 blocks
.append(matrix(field
, 2, [[a
,b
],[-b
,a
]]))
1250 return matrix
.block(field
, n
, blocks
)
1254 def real_unembed(M
):
1256 The inverse of _embed_complex_matrix().
1260 sage: from mjo.eja.eja_algebra import \
1261 ....: ComplexMatrixEuclideanJordanAlgebra
1265 sage: A = matrix(QQ,[ [ 1, 2, 3, 4],
1266 ....: [-2, 1, -4, 3],
1267 ....: [ 9, 10, 11, 12],
1268 ....: [-10, 9, -12, 11] ])
1269 sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(A)
1271 [ 10*i + 9 12*i + 11]
1275 Unembedding is the inverse of embedding::
1277 sage: set_random_seed()
1278 sage: F = QuadraticField(-1, 'i')
1279 sage: M = random_matrix(F, 3)
1280 sage: Me = ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
1281 sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
1287 raise ValueError("the matrix 'M' must be square")
1288 if not n
.mod(2).is_zero():
1289 raise ValueError("the matrix 'M' must be a complex embedding")
1291 # If "M" was normalized, its base ring might have roots
1292 # adjoined and they can stick around after unembedding.
1293 field
= M
.base_ring()
1294 R
= PolynomialRing(field
, 'z')
1296 F
= field
.extension(z
**2 + 1, 'i', embedding
=CLF(-1).sqrt())
1299 # Go top-left to bottom-right (reading order), converting every
1300 # 2-by-2 block we see to a single complex element.
1302 for k
in xrange(n
/2):
1303 for j
in xrange(n
/2):
1304 submat
= M
[2*k
:2*k
+2,2*j
:2*j
+2]
1305 if submat
[0,0] != submat
[1,1]:
1306 raise ValueError('bad on-diagonal submatrix')
1307 if submat
[0,1] != -submat
[1,0]:
1308 raise ValueError('bad off-diagonal submatrix')
1309 z
= submat
[0,0] + submat
[0,1]*i
1312 return matrix(F
, n
/2, elements
)
1316 def natural_inner_product(cls
,X
,Y
):
1318 Compute a natural inner product in this algebra directly from
1323 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1327 This gives the same answer as the slow, default method implemented
1328 in :class:`MatrixEuclideanJordanAlgebra`::
1330 sage: set_random_seed()
1331 sage: J = ComplexHermitianEJA.random_instance()
1332 sage: x,y = J.random_elements(2)
1333 sage: Xe = x.natural_representation()
1334 sage: Ye = y.natural_representation()
1335 sage: X = ComplexHermitianEJA.real_unembed(Xe)
1336 sage: Y = ComplexHermitianEJA.real_unembed(Ye)
1337 sage: expected = (X*Y).trace().vector()[0]
1338 sage: actual = ComplexHermitianEJA.natural_inner_product(Xe,Ye)
1339 sage: actual == expected
1343 return RealMatrixEuclideanJordanAlgebra
.natural_inner_product(X
,Y
)/2
1346 class ComplexHermitianEJA(ComplexMatrixEuclideanJordanAlgebra
, KnownRankEJA
):
1348 The rank-n simple EJA consisting of complex Hermitian n-by-n
1349 matrices over the real numbers, the usual symmetric Jordan product,
1350 and the real-part-of-trace inner product. It has dimension `n^2` over
1355 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1359 In theory, our "field" can be any subfield of the reals::
1361 sage: ComplexHermitianEJA(2, AA)
1362 Euclidean Jordan algebra of dimension 4 over Algebraic Real Field
1363 sage: ComplexHermitianEJA(2, RR)
1364 Euclidean Jordan algebra of dimension 4 over Real Field with
1365 53 bits of precision
1369 The dimension of this algebra is `n^2`::
1371 sage: set_random_seed()
1372 sage: n_max = ComplexHermitianEJA._max_test_case_size()
1373 sage: n = ZZ.random_element(1, n_max)
1374 sage: J = ComplexHermitianEJA(n)
1375 sage: J.dimension() == n^2
1378 The Jordan multiplication is what we think it is::
1380 sage: set_random_seed()
1381 sage: J = ComplexHermitianEJA.random_instance()
1382 sage: x,y = J.random_elements(2)
1383 sage: actual = (x*y).natural_representation()
1384 sage: X = x.natural_representation()
1385 sage: Y = y.natural_representation()
1386 sage: expected = (X*Y + Y*X)/2
1387 sage: actual == expected
1389 sage: J(expected) == x*y
1392 We can change the generator prefix::
1394 sage: ComplexHermitianEJA(2, prefix='z').gens()
1397 Our natural basis is normalized with respect to the natural inner
1398 product unless we specify otherwise::
1400 sage: set_random_seed()
1401 sage: J = ComplexHermitianEJA.random_instance()
1402 sage: all( b.norm() == 1 for b in J.gens() )
1405 Since our natural basis is normalized with respect to the natural
1406 inner product, and since we know that this algebra is an EJA, any
1407 left-multiplication operator's matrix will be symmetric because
1408 natural->EJA basis representation is an isometry and within the EJA
1409 the operator is self-adjoint by the Jordan axiom::
1411 sage: set_random_seed()
1412 sage: x = ComplexHermitianEJA.random_instance().random_element()
1413 sage: x.operator().matrix().is_symmetric()
1419 def _denormalized_basis(cls
, n
, field
):
1421 Returns a basis for the space of complex Hermitian n-by-n matrices.
1423 Why do we embed these? Basically, because all of numerical linear
1424 algebra assumes that you're working with vectors consisting of `n`
1425 entries from a field and scalars from the same field. There's no way
1426 to tell SageMath that (for example) the vectors contain complex
1427 numbers, while the scalar field is real.
1431 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
1435 sage: set_random_seed()
1436 sage: n = ZZ.random_element(1,5)
1437 sage: field = QuadraticField(2, 'sqrt2')
1438 sage: B = ComplexHermitianEJA._denormalized_basis(n, field)
1439 sage: all( M.is_symmetric() for M in B)
1443 R
= PolynomialRing(field
, 'z')
1445 F
= field
.extension(z
**2 + 1, 'I')
1448 # This is like the symmetric case, but we need to be careful:
1450 # * We want conjugate-symmetry, not just symmetry.
1451 # * The diagonal will (as a result) be real.
1455 for j
in xrange(i
+1):
1456 Eij
= matrix(F
, n
, lambda k
,l
: k
==i
and l
==j
)
1458 Sij
= cls
.real_embed(Eij
)
1461 # The second one has a minus because it's conjugated.
1462 Sij_real
= cls
.real_embed(Eij
+ Eij
.transpose())
1464 Sij_imag
= cls
.real_embed(I
*Eij
- I
*Eij
.transpose())
1467 # Since we embedded these, we can drop back to the "field" that we
1468 # started with instead of the complex extension "F".
1469 return ( s
.change_ring(field
) for s
in S
)
1472 def __init__(self
, n
, field
=QQ
, **kwargs
):
1473 basis
= self
._denormalized
_basis
(n
,field
)
1474 super(ComplexHermitianEJA
,self
).__init
__(field
, basis
, n
, **kwargs
)
1477 class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra
):
1481 Embed the n-by-n quaternion matrix ``M`` into the space of real
1482 matrices of size 4n-by-4n by first sending each quaternion entry `z
1483 = a + bi + cj + dk` to the block-complex matrix ``[[a + bi,
1484 c+di],[-c + di, a-bi]]`, and then embedding those into a real
1489 sage: from mjo.eja.eja_algebra import \
1490 ....: QuaternionMatrixEuclideanJordanAlgebra
1494 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1495 sage: i,j,k = Q.gens()
1496 sage: x = 1 + 2*i + 3*j + 4*k
1497 sage: M = matrix(Q, 1, [[x]])
1498 sage: QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
1504 Embedding is a homomorphism (isomorphism, in fact)::
1506 sage: set_random_seed()
1507 sage: n_max = QuaternionMatrixEuclideanJordanAlgebra._max_test_case_size()
1508 sage: n = ZZ.random_element(n_max)
1509 sage: Q = QuaternionAlgebra(QQ,-1,-1)
1510 sage: X = random_matrix(Q, n)
1511 sage: Y = random_matrix(Q, n)
1512 sage: Xe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X)
1513 sage: Ye = QuaternionMatrixEuclideanJordanAlgebra.real_embed(Y)
1514 sage: XYe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X*Y)
1519 quaternions
= M
.base_ring()
1522 raise ValueError("the matrix 'M' must be square")
1524 F
= QuadraticField(-1, 'i')
1529 t
= z
.coefficient_tuple()
1534 cplxM
= matrix(F
, 2, [[ a
+ b
*i
, c
+ d
*i
],
1535 [-c
+ d
*i
, a
- b
*i
]])
1536 realM
= ComplexMatrixEuclideanJordanAlgebra
.real_embed(cplxM
)
1537 blocks
.append(realM
)
1539 # We should have real entries by now, so use the realest field
1540 # we've got for the return value.
1541 return matrix
.block(quaternions
.base_ring(), n
, blocks
)
1546 def real_unembed(M
):
1548 The inverse of _embed_quaternion_matrix().
1552 sage: from mjo.eja.eja_algebra import \
1553 ....: QuaternionMatrixEuclideanJordanAlgebra
1557 sage: M = matrix(QQ, [[ 1, 2, 3, 4],
1558 ....: [-2, 1, -4, 3],
1559 ....: [-3, 4, 1, -2],
1560 ....: [-4, -3, 2, 1]])
1561 sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(M)
1562 [1 + 2*i + 3*j + 4*k]
1566 Unembedding is the inverse of embedding::
1568 sage: set_random_seed()
1569 sage: Q = QuaternionAlgebra(QQ, -1, -1)
1570 sage: M = random_matrix(Q, 3)
1571 sage: Me = QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
1572 sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
1578 raise ValueError("the matrix 'M' must be square")
1579 if not n
.mod(4).is_zero():
1580 raise ValueError("the matrix 'M' must be a quaternion embedding")
1582 # Use the base ring of the matrix to ensure that its entries can be
1583 # multiplied by elements of the quaternion algebra.
1584 field
= M
.base_ring()
1585 Q
= QuaternionAlgebra(field
,-1,-1)
1588 # Go top-left to bottom-right (reading order), converting every
1589 # 4-by-4 block we see to a 2-by-2 complex block, to a 1-by-1
1592 for l
in xrange(n
/4):
1593 for m
in xrange(n
/4):
1594 submat
= ComplexMatrixEuclideanJordanAlgebra
.real_unembed(
1595 M
[4*l
:4*l
+4,4*m
:4*m
+4] )
1596 if submat
[0,0] != submat
[1,1].conjugate():
1597 raise ValueError('bad on-diagonal submatrix')
1598 if submat
[0,1] != -submat
[1,0].conjugate():
1599 raise ValueError('bad off-diagonal submatrix')
1600 z
= submat
[0,0].vector()[0] # real part
1601 z
+= submat
[0,0].vector()[1]*i
# imag part
1602 z
+= submat
[0,1].vector()[0]*j
# real part
1603 z
+= submat
[0,1].vector()[1]*k
# imag part
1606 return matrix(Q
, n
/4, elements
)
1610 def natural_inner_product(cls
,X
,Y
):
1612 Compute a natural inner product in this algebra directly from
1617 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
1621 This gives the same answer as the slow, default method implemented
1622 in :class:`MatrixEuclideanJordanAlgebra`::
1624 sage: set_random_seed()
1625 sage: J = QuaternionHermitianEJA.random_instance()
1626 sage: x,y = J.random_elements(2)
1627 sage: Xe = x.natural_representation()
1628 sage: Ye = y.natural_representation()
1629 sage: X = QuaternionHermitianEJA.real_unembed(Xe)
1630 sage: Y = QuaternionHermitianEJA.real_unembed(Ye)
1631 sage: expected = (X*Y).trace().coefficient_tuple()[0]
1632 sage: actual = QuaternionHermitianEJA.natural_inner_product(Xe,Ye)
1633 sage: actual == expected
1637 return RealMatrixEuclideanJordanAlgebra
.natural_inner_product(X
,Y
)/4
1640 class QuaternionHermitianEJA(QuaternionMatrixEuclideanJordanAlgebra
,
1643 The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
1644 matrices, the usual symmetric Jordan product, and the
1645 real-part-of-trace inner product. It has dimension `2n^2 - n` over
1650 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
1654 In theory, our "field" can be any subfield of the reals::
1656 sage: QuaternionHermitianEJA(2, AA)
1657 Euclidean Jordan algebra of dimension 6 over Algebraic Real Field
1658 sage: QuaternionHermitianEJA(2, RR)
1659 Euclidean Jordan algebra of dimension 6 over Real Field with
1660 53 bits of precision
1664 The dimension of this algebra is `2*n^2 - n`::
1666 sage: set_random_seed()
1667 sage: n_max = QuaternionHermitianEJA._max_test_case_size()
1668 sage: n = ZZ.random_element(1, n_max)
1669 sage: J = QuaternionHermitianEJA(n)
1670 sage: J.dimension() == 2*(n^2) - n
1673 The Jordan multiplication is what we think it is::
1675 sage: set_random_seed()
1676 sage: J = QuaternionHermitianEJA.random_instance()
1677 sage: x,y = J.random_elements(2)
1678 sage: actual = (x*y).natural_representation()
1679 sage: X = x.natural_representation()
1680 sage: Y = y.natural_representation()
1681 sage: expected = (X*Y + Y*X)/2
1682 sage: actual == expected
1684 sage: J(expected) == x*y
1687 We can change the generator prefix::
1689 sage: QuaternionHermitianEJA(2, prefix='a').gens()
1690 (a0, a1, a2, a3, a4, a5)
1692 Our natural basis is normalized with respect to the natural inner
1693 product unless we specify otherwise::
1695 sage: set_random_seed()
1696 sage: J = QuaternionHermitianEJA.random_instance()
1697 sage: all( b.norm() == 1 for b in J.gens() )
1700 Since our natural basis is normalized with respect to the natural
1701 inner product, and since we know that this algebra is an EJA, any
1702 left-multiplication operator's matrix will be symmetric because
1703 natural->EJA basis representation is an isometry and within the EJA
1704 the operator is self-adjoint by the Jordan axiom::
1706 sage: set_random_seed()
1707 sage: x = QuaternionHermitianEJA.random_instance().random_element()
1708 sage: x.operator().matrix().is_symmetric()
1713 def _denormalized_basis(cls
, n
, field
):
1715 Returns a basis for the space of quaternion Hermitian n-by-n matrices.
1717 Why do we embed these? Basically, because all of numerical
1718 linear algebra assumes that you're working with vectors consisting
1719 of `n` entries from a field and scalars from the same field. There's
1720 no way to tell SageMath that (for example) the vectors contain
1721 complex numbers, while the scalar field is real.
1725 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
1729 sage: set_random_seed()
1730 sage: n = ZZ.random_element(1,5)
1731 sage: B = QuaternionHermitianEJA._denormalized_basis(n,QQ)
1732 sage: all( M.is_symmetric() for M in B )
1736 Q
= QuaternionAlgebra(QQ
,-1,-1)
1739 # This is like the symmetric case, but we need to be careful:
1741 # * We want conjugate-symmetry, not just symmetry.
1742 # * The diagonal will (as a result) be real.
1746 for j
in xrange(i
+1):
1747 Eij
= matrix(Q
, n
, lambda k
,l
: k
==i
and l
==j
)
1749 Sij
= cls
.real_embed(Eij
)
1752 # The second, third, and fourth ones have a minus
1753 # because they're conjugated.
1754 Sij_real
= cls
.real_embed(Eij
+ Eij
.transpose())
1756 Sij_I
= cls
.real_embed(I
*Eij
- I
*Eij
.transpose())
1758 Sij_J
= cls
.real_embed(J
*Eij
- J
*Eij
.transpose())
1760 Sij_K
= cls
.real_embed(K
*Eij
- K
*Eij
.transpose())
1763 # Since we embedded these, we can drop back to the "field" that we
1764 # started with instead of the quaternion algebra "Q".
1765 return ( s
.change_ring(field
) for s
in S
)
1768 def __init__(self
, n
, field
=QQ
, **kwargs
):
1769 basis
= self
._denormalized
_basis
(n
,field
)
1770 super(QuaternionHermitianEJA
,self
).__init
__(field
, basis
, n
, **kwargs
)
1773 class JordanSpinEJA(FiniteDimensionalEuclideanJordanAlgebra
, KnownRankEJA
):
1775 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
1776 with the usual inner product and jordan product ``x*y =
1777 (<x_bar,y_bar>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
1782 sage: from mjo.eja.eja_algebra import JordanSpinEJA
1786 This multiplication table can be verified by hand::
1788 sage: J = JordanSpinEJA(4)
1789 sage: e0,e1,e2,e3 = J.gens()
1805 We can change the generator prefix::
1807 sage: JordanSpinEJA(2, prefix='B').gens()
1811 def __init__(self
, n
, field
=QQ
, **kwargs
):
1812 V
= VectorSpace(field
, n
)
1813 mult_table
= [[V
.zero() for j
in xrange(n
)] for i
in xrange(n
)]
1823 z0
= x
.inner_product(y
)
1824 zbar
= y0
*xbar
+ x0
*ybar
1825 z
= V([z0
] + zbar
.list())
1826 mult_table
[i
][j
] = z
1828 # The rank of the spin algebra is two, unless we're in a
1829 # one-dimensional ambient space (because the rank is bounded by
1830 # the ambient dimension).
1831 fdeja
= super(JordanSpinEJA
, self
)
1832 return fdeja
.__init
__(field
, mult_table
, rank
=min(n
,2), **kwargs
)
1834 def inner_product(self
, x
, y
):
1836 Faster to reimplement than to use natural representations.
1840 sage: from mjo.eja.eja_algebra import JordanSpinEJA
1844 Ensure that this is the usual inner product for the algebras
1847 sage: set_random_seed()
1848 sage: J = JordanSpinEJA.random_instance()
1849 sage: x,y = J.random_elements(2)
1850 sage: X = x.natural_representation()
1851 sage: Y = y.natural_representation()
1852 sage: x.inner_product(y) == J.natural_inner_product(X,Y)
1856 return x
.to_vector().inner_product(y
.to_vector())